On the construction of wavefunctions in the six quark system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 157
(http://iopscience.iop.org/0305-4470/15/1/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:50

Please note that terms and conditions apply.

On the construction of wavefunctions in the six-quark system

I T Obukhovsky, Yu F Smirnov and Yu M Tchuvil'sky
Institute of Nuclear Physics, Moscow State Universi+y, Moscow 117234, USSR

Received 5 September 1980, in final form 7 May 1981

Abstract

A method for calculating the fractional parentage coefficients for many-quark systems in the scheme $U_{C S T}(12) \supset U_{C S}(6) \times U_{T}(2) \supset U_{C}(3) \geqslant U_{S}(2) \times U_{T}(2)$ based on the complementarity of the permutation S_{N} and unitary $\mathrm{U}(n)$ groups, is developed. The scalar factors of the Clebsch-Gordan coefficients for the chain of groups $\mathrm{U}(m n) \supset \mathrm{U}(m) \times \mathrm{U}(n)$ are shown to be independent of the ranks $m n, m$ and n of the groups and to be determined by the Young schemes associated with them. Tables of fractional parentage coefficients for low states of the six-quark (6 q) system are presented.

1. Introduction

Much attention has recently been given to a study of the role of quarks in nuclear structure: the problem of dibaryon resonances (Aert 1978, Neudatchin 1977, De Swart 1980), the manifestation of quark structures of nuclei in the cumulative effect (Baldin 1977, Lukyanov and Titov 1979), the derivation of the nN potentials on the basis of quark-quark forces (De Tar 1978, Liberman 1977, Wong 1977), a description of the NN scattering as a scattering of three-quark clusters (Ribeiro 1978, Oka and Yazaki 1980, Toki 1980), the problem of 'hidden' colour in the quark systems (Matveyev and Sorba 1977) and a study of isobar components in the deuteron in terms of the quark model (Smirnov and Tchuvil'sky 1978).

A study of the above problems is reduced to a consideration of the properties of the multi-quark systems. In the simple case of the deuteron and NN scattering it involves a consideration of the 6 q system. For this purpose it is first necessary to construct the antisymmetrical wavefunctions of the multi-quark systems in the coloured quark model. This problem is urgent both for the theory of quark bags (De Tar 1978, De Grand 1975) and for the phenomenological non-relativistic quark model (Ribeiro 1978, Liberman 1977).

A conventional method for constructing the wavefunctions of many-particle systems with a given non-relativistic symmetry is the technique of fractional parentage coefficients (FPC). Below we shall consider the problem of calculating FPC for the multi-quark systems and give the tables of their values for the lower states of the system of six non-strange quarks u, d.

According to the Racah lemma (Racah 1949) the FPC is factorised into the orbital, spin, colour and isospin parts. The two latter parts are the same in the bag theory and in the non-relativistic quark models. The orbital and spin parts in the bag theory are like the usual shell FPC in the $j j$ coupling scheme. A disadvantage of the wavefunctions of
the bag theory is that in these states the centre of mass of the quark system suffers unphysical vibrations.

This disadvantage can be eliminated in the non-relativistic oscillator quark model by analogy with the translationally invariant shell model (TISM) (Neudatchin et al 1979). Non-relativistic oscillator quark-model calculations can be carried out using FPC for the tism calculated by Kurdyumov (1970). Therefore, the present paper is confined mainly to a consideration of the spin-colour-isospin part of the FPC which are the ClebschGordan coefficients (CGC) for the group $\mathrm{U}(12)$ in the reduction

$$
\begin{align*}
& \mathrm{U}_{C S T}(12) \supset \mathrm{U}_{C S}(6) \times \mathrm{U}_{T}(2), \\
& \mathrm{U}_{C S}(6) \supset \mathrm{U}_{C}(3) \times \mathrm{U}_{S}(2), \quad \mathrm{U}_{C}(3) \supset \mathrm{O}_{C}(3) \tag{1.1}
\end{align*}
$$

The CGC of the type $\left\langle q^{6} \mid q^{5}, q\right\rangle,\left\langle q^{6} \mid q^{3}, q^{3}\right\rangle$ for the group $\mathrm{U}(6)$ in the case of the 6 q system were calculated by So and Strottman (1979). We shall be concerned with the CGC of a more general type for the whole chain of groups (1.1) and also the CGC of the type $\left\langle q^{6} \mid q^{4}, q^{2}\right\rangle$ which are most convenient for the spectroscopic calculation. We use the Weyl method based on the complementarity of the permutation and unitary groups. The complementarity nature of the groups $\mathrm{U}(m)$ and S_{N} is by now very well known. The first exploitation of results for S_{N} in calculations for $\mathrm{U}(m)$ are those of Jahn (1950, 1954) and Flowers (1952). These techniques are now textbook material: Vanagas (1971). In our terminology the main idea of the method is the following. The total wavefunction of the system of N quarks $\Psi_{n}\left(q^{N}\right)$ is comprised of the spatial, spin, colour and isospin parts. If the noted partial wavefunctions are known, the total wavefunction is constructed from them using CGC for the permutation group S_{N} (see, below, the formula (4.3)). The problem of the fractional parentage expansion of the total wavefunction is therefore reduced to the construction of fractional parentage expansions for its separate parts. The FP expansions for the spin and isospin functions are known (Jahn and van Wieringen 1951). For the colour part of the function it is possible to use the orbital FPC tabulated for the p shell (Jahn and van Wieringen 1951). The FPC for the spatial part of the wavefunction are also easily found. The technique of calculating the Clebsch-Gordan coefficients for the permutation group S_{N} is described in the monograph by Hammermesh (1964). The corresponding transformational matrices are studied by Kaplan (1969) and tabulated for $N \leqslant 6$ (Kaplan 1962). So, all the components which are necessary and sufficient for constructing the FP expansion of the total wavefunction of the system of N quarks $(N \leqslant 6)$ are available in the literature.

We shall present the tables of FPC for the lower states of the 6 q systems. Some general properties of CGC for the group $\mathrm{U}(m)$ will be determined.

2. The complementarity of the groups $U(m)$ and S_{N}

Let us recall the definition and meaning of the fractional parentage coefficients (FPC) for the part of the wavefunction characterised by the symmetry $\mathrm{U}(m)(m=2$ for the spin (S) or isospin (T) part, $m=3$ for the coloured part (C) etc). Suppose we have N particles any of which can be in one of m states $\chi_{1}, \chi_{2}, \ldots, \chi_{m}$. A set of these states forms the basis of a simple irreducible representation (IR) $D^{[1]}$ of the group $\mathrm{U}(m)$ with the Young scheme [1]. The wavefunctions of the system of N particles appear as $\chi_{i}(1), \chi_{i}(2), \ldots, \chi_{k}(N),(i, j, k=1,2, \ldots, m)$. The total number of the functions is m^{N}. In the m-dimensional vector space they form the tensor of rank N. In terms of the group
$\mathrm{U}(m)$ they form the basis of a direct product of N irreducible representations $D^{[1]} \times$ $D^{[1]} \times \ldots \times D^{[1]}$, i.e. the question concerns the power [1] ${ }^{N}$. This representation is reducible and can be expanded into the irreps $D^{[f]}$ of the group $U(m)$

$$
\begin{equation*}
[1]^{N}=\sum_{f} \nu_{f}[f] . \tag{2.1}
\end{equation*}
$$

According to the results of Weyl (1946), this expansion involves the Young schemes $[f]=\left[f_{1} f_{2} \ldots f_{m}\right]$ containing N squares and no more than m rows $\left(N=f_{1}+f_{2}+\ldots+\right.$ f_{m}). The multiplicity ν_{f} of each irrep $D^{[f]}$ in the sum (2.1) is equal to the irrep dimension of the same Young scheme $\{f\}$ but now of the permutation group S_{N} :

$$
\begin{equation*}
\nu_{f}=\operatorname{dim}\{f\} \tag{2.2}
\end{equation*}
$$

This results from the fact that the space \mathscr{L} of the representation $[1]^{N}$ stretched over the components of the tensor of rank N in the m-dimensional space (m^{N}), can be treated as a space of a certain representation of the direct product of groups $\mathrm{U}(m) \times \mathrm{S}_{N}$. If the representation $[1]^{N}$ is expanded into irreps $([f],\{f\})$ of these two groups, the result of Weyl (2.1), (2.2) can be rewritten as

$$
\begin{equation*}
[1]^{N}=\sum_{f}([f],\{f\}) . \tag{2.3}
\end{equation*}
$$

This remarkable result shows that in the space \mathscr{L} of the representation $[1]^{N}$ each irrep $D^{[f]}$ of the group $\mathrm{U}(m)$ combines with only one definite irrep of the group S_{N} with the same Young scheme $\{f\}$. Due to these properties, the groups $U(m)$ and S_{N} may be called 'complementary' within the space \mathscr{L} (or m^{N}) following the definition of 'complimentarity' suggested by Moshinsky and Quesne (1970). The noted complementarity accounts for a strong interrelation between different quantities in the representations of the groups $\mathrm{U}(m)$ and S_{N}. These interrelations have been discovered in a variety of recent papers: Kramer and Seligman (1969a, b), Sullivan (1973), Alishauskas (1976), So and Strottman (1979) and Harvey (1981).

Among the earlier results, it is appropriate to mention the construction of fractional parentage coefficients (Jahn 1951, Elliott et al 1953) in the nuclear shell model using the matrix elements of the permutation operators $P \in S_{N}$, which relates, in effect, the CGC of the unitary group to similar quantities of the group S_{N}. Proceeding from these results, we have studied in more detail the problem of the interrelation between the CGC for the groups $\mathrm{U}(m)$ and S_{N} and have obtained an explicit expression for the CGC of the group $\mathrm{U}(m)$ in the reduction of type (1.1) through the CGC for the group S_{N}. This provides us with a universal method for calculating the CGC for the group $\mathrm{U}(m)$ of any rank if the cGc for the inner product of the irreps of the group S_{N} are known (Hammermesh 1964).

Just as in the papers (Jahn and van Wieringen 1951, Elliott et al 1953), we shall use for the representations ([f], $\{f\}$) of the group $U(m) \times S_{N}$ in the space m^{N}, the YoungYamanouchi basis

$$
\begin{equation*}
\left|m^{N}[f] \alpha,\{f\}(r)\right\rangle \equiv\left|m^{N}[f] \alpha,(r)\right\rangle . \tag{2.4}
\end{equation*}
$$

Here, (r) is a Yamanouchi symbol specifying a set of the Young permutation schemes $\{f\},\left\{f^{(N-1)}\right\},\left\{f^{(N-2)}\right\}, \ldots,\left\{f^{(1)}\right\}=\{1\}$ labelling the irreps of a chain of subgroups

$$
\begin{equation*}
\mathbf{S}_{N} \supset \mathbf{S}_{N-1} \supset \mathbf{S}_{N-2} \supset \ldots \supset \mathrm{~S}_{1} . \tag{2.5}
\end{equation*}
$$

α is a complete set of quantum numbers of the group $\mathrm{U}(m)$ labelling the vectors of the irrep $D^{[f]}$. However, for this purpose we shall not use the Gel'fand-Tsetlin basis corresponding to the reduction (Gel'fand and Tsetlin 1970)

$$
\mathrm{U}(m) \supset \mathrm{U}(m-1) \supset \ldots \supset \mathrm{U}(1)
$$

since it is more interesting for physical applications to use the reduction of the type (1.1) into a direct product of subgroups

$$
\begin{equation*}
\mathrm{U}_{a b}(m) \supset \mathrm{U}_{a}\left(m_{a}\right) \times \mathrm{U}_{b}\left(m_{b}\right), \quad m=m_{a} m_{b} \tag{2.6}
\end{equation*}
$$

The redaction (2.6) does not provide a complete set of quantum numbers and therefore we use, along with the quantum numbers ($\left[f_{a}\right] \alpha_{a},\left[f_{b}\right] \alpha_{b}$) of the subgroups $\mathrm{U}_{a}\left(m_{a}\right)$ and $U_{b}\left(m_{b}\right)$, an additional quantum number, namely the integer index $\omega_{a b}=1,2, \ldots$, which will simply enumerate the equivalent representations of the group $\mathrm{U}_{a}\left(m_{a}\right) \times \mathrm{U}_{b}\left(m_{b}\right)$ in a given irrep $D^{\left[f_{a b}\right]}$ of the group $\mathrm{U}_{a b}(m)$:

$$
\begin{equation*}
\alpha_{a b}=\omega_{a b},\left(\left[f_{a}\right] \alpha_{a},\left[f_{b}\right] \alpha_{b}\right) . \tag{2.7}
\end{equation*}
$$

It will be noted that in the chain (1.1), a set of indices ($a b, a, b$) are ($C S, C, S$), (CST, CS, T) and this sequence can be further continued by combining the orbital space (X) with the CST space since the orbital states can also be specified by the quantum numbers of unitary groups (see § 5).

In order to obtain the fractional parentage expansions in the system of N particleswe should use, along with the Young-Yamanouchi basis (2.4), another basis corresponding to the non-standard reduction

$$
\begin{align*}
& \mathrm{S}_{N} \supset \mathrm{~S}_{N^{\prime}} \times \mathrm{S}_{N^{\prime \prime}}, \quad N=N^{\prime}+N^{\prime \prime}, \\
& \mathrm{S}_{N^{\prime}} \supset \mathrm{S}_{N^{\prime}-1} \supset \ldots \supset \mathrm{~S}_{1} \tag{2.8}\\
& \mathrm{~S}_{N^{\prime \prime}} \supset \mathrm{S}_{N^{\prime \prime}-1} \supset \ldots \supset \mathrm{~S}_{1} .
\end{align*}
$$

Divide the N particles into two assemblies $1,2, \ldots, N^{\prime}$ and $N^{\prime}+1, N^{\prime}+2, \ldots, N$ and successively multiply the representations ($\left[f^{\prime}\right],\left\{f^{\prime}\right\}$) and ($\left[f^{\prime \prime}\right],\left\{f^{\prime \prime}\right\}$) defined by the functions $\left|m^{N^{\prime}}\left[f^{\prime}\right] \alpha^{\prime},\left(r^{\prime}\right)\right\rangle$ and $\left|m^{N^{\prime \prime}}\left[f^{\prime \prime}\right] \alpha^{\prime \prime},\left(r^{\prime \prime}\right)\right\rangle$ with the aid of the CGC of group $\mathrm{U}(m)$

$$
\begin{align*}
& \mid m^{\left.N^{\prime} m^{N^{\prime \prime}}[f] \alpha,\left(r^{\prime}\right),\left(r^{\prime \prime}\right)\right\rangle_{\gamma}} \\
& \left.\quad=\sum_{\alpha^{\prime}, \alpha^{\prime \prime}} \begin{array}{cc}
{\left[\begin{array}{cc}
{\left[f^{\prime}\right]} & {\left[f^{\prime \prime}\right]} \\
\alpha^{\prime} & \alpha^{\prime \prime}
\end{array}\right.} & {[f]}
\end{array}\right\rangle_{\gamma}\left|m^{N^{\prime}}\left[f^{\prime}\right] \alpha^{\prime},\left(r^{\prime}\right)\right\rangle\left|m^{N^{\prime \prime}}\left[f^{\prime \prime}\right] \alpha^{\prime \prime},\left(r^{\prime \prime}\right)\right\rangle . \tag{2.9}
\end{align*}
$$

Here, the index γ is the additional quantum number labelling the equivalent representations in the Clebsch-Gordan series for the outer product (Hammermesh 1964) of the Young schemes

$$
\begin{equation*}
\left\{f^{\prime}\right\} \times\left\{f^{\prime \prime}\right\}=\sum_{f} \nu_{f}\{f\}, \quad \nu_{f} \geqslant 1 \tag{2.10}
\end{equation*}
$$

$\gamma=1,2, \ldots, \nu_{f}$. In (2.9) the Clebsch-Gordan coefficients for the group $\mathrm{U}(m)$ are assumed to be orthogonalised with respect to the index γ

$$
\sum_{\alpha^{\prime}, \alpha^{\prime \prime}}\left\langle\begin{array}{cc|c}
{\left[f^{\prime}\right]} & {\left[f^{\prime \prime}\right]} & {[f]} \tag{2.11}\\
\alpha^{\prime} & \alpha^{\prime \prime} & \alpha
\end{array}\right\rangle_{\gamma}\left\langle\left.\begin{array}{cc}
{\left[f^{\prime}\right]} & {\left[f^{\prime \prime}\right]} \\
\alpha^{\prime} & \alpha^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{c}
{[\bar{f}]} \\
\bar{\alpha}
\end{array}\right\rangle_{\bar{\gamma}}=\delta_{f f} \delta_{\alpha \bar{\alpha}} \delta_{\gamma \bar{\gamma}}
$$

The basis vectors (2.9) are the linear combinations of vectors (2.4) of the YoungYamanouchi basis

$$
\begin{align*}
&\left|m^{N^{\prime}} m^{N^{\prime \prime}}[f] \alpha,\left(r^{\prime}\right),\left(r^{\prime \prime}\right)\right\rangle_{\gamma} \\
&=\sum_{\rho^{\prime \prime}}\left\langle\{f\}\left(r=r^{\prime} \rho^{\prime \prime}\right) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}\left|m^{N}[f] \alpha,\left(r=r^{\prime} \rho^{\prime \prime}\right)\right\rangle . \tag{2.12}
\end{align*}
$$

The notation utilised in (2.12) is as follows. The Yamanouchi symbol (r) which consists of N numbers n_{i}, labelling the rows of the standard Young table $\{f\}$ (i is the particle number)

$$
(r)=\left(n_{1} n_{2} \ldots n_{i} \ldots n_{N^{\prime}} n_{N^{\prime}+1} \ldots n_{N}\right)
$$

is divided into two parts. The first part for the particles $1 \leqslant i \leqslant N^{\prime}$ corresponds to the standard Young table $\left\{f^{\prime}\right\}$ and the Yamanouchi symbol

$$
\left(r^{\prime}\right)=\left(n_{1} n_{2} \ldots n_{i} \ldots n_{N^{\prime}}\right)
$$

but the second part

$$
\rho^{\prime \prime}=n_{N^{\prime}+1} n_{N^{\prime}+2} \ldots n_{N}
$$

does not correspond to any definite standard Young scheme.
The coefficients in the expansion (2.12) are the transformation matrices (TM) which were introduced by Elliott et al (1953) and studied by Kaplan (1962), Kramer (1968) and Kramer and Seligman (1969a, b). For the case $N^{\prime \prime}=2$ the TM were tabulated by Kaplan (1969). The TM satisfy the following orthogonality relations

$$
\begin{align*}
& \begin{aligned}
& \sum_{\rho^{\prime \prime}}\left\langle\{f\}\left(r=r^{\prime} \rho^{\prime \prime}\right) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}\left\langle\{f\}\left(r=r^{\prime} \rho^{\prime \prime}\right) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{\bar{f}^{\prime \prime}\right\}\left(\bar{r}^{\prime \prime}\right)\right\rangle_{\bar{\gamma}} \\
&=\delta_{f^{\prime \prime} \bar{f}^{\prime \prime}} \delta_{r^{\prime \prime} \bar{F}^{\prime \prime}} \delta_{\gamma^{\gamma}}
\end{aligned} \\
& \sum_{\gamma} \sum_{f^{\prime \prime}, r^{\prime \prime}}\left\langle\{f\}\left(r=r^{\prime} \rho^{\prime \prime}\right) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}\left\langle\{f\}\left(\bar{r}=r^{\prime} \bar{\rho}^{\prime \prime}\right)\left\{\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}=\delta_{\rho^{\prime \prime} \bar{\rho}}\right.
\end{align*}
$$

that follow from the unitarity of transformation (2.12) with a certain choice of phase factors (when the TMs are real).

It is significant that the тм can be calculated from the equality (2.12) if we operate on the right- and left-hand sides of (2.12) by the operators P of the permutation group $\mathrm{S}_{\boldsymbol{N}}$ using known values of the matrix elements $\langle\{f\}(r)| P|\{f\}(\bar{r})\rangle$ in the Young-Yamanouchi basis (Hammermesh 1964). In the paper (Kaplan 1969), for example, the TM were explicitly expressed in terms of the Young projectors (Jahn 1954)

$$
C_{\tilde{r}}^{i f\}}=\frac{n_{f}}{N!} \sum_{P \in S_{N}}\langle\{f\}(r)| P|\{f\}(\tilde{r})\rangle P
$$

When the multiplicities are absent $\left(\nu_{f} \leqslant 1\right.$ in (2.10))
$\left\langle\{f\}(r) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}=\left(\langle\{f\}(\bar{r})| C_{\bar{r}^{\prime \prime} \bar{r}^{\prime \prime}}^{\left\{\bar{m}^{\prime \prime}\right.}|\{f\}(\bar{r})\rangle\right)^{-1 / 2}\langle\{f\}(r)| C_{r^{\prime} \bar{r}^{\prime \prime}}^{\left\{f^{\prime \prime}\right.}|\{f\}(\bar{r})\rangle$.
On the other hand, knowledge of the matrix elements $D_{\alpha \bar{\alpha}}^{[f]}(\mathscr{U})=\langle[f] \alpha| \mathscr{U}|[f] \bar{\alpha}\rangle$ of the operators \mathscr{U} for the unitary group (D functions) is clearly required (Wigner 1959) to calculate the Clebsch-Gordan coefficients for the unitary group which are needed to construct the same vector in the space $m^{N^{\prime}} \times m^{N^{\prime \prime}}(2.9)$. This is a much more complex task as compared with the calculation of $\langle\{f\}(r)| P|\{f\}(\bar{r})\rangle$.

As is already known (Kramer and Seligman 1969a, b, Sullivan 1973, 1978a, b), the matrix elements of permutations in the basis (2.9)

$$
\begin{equation*}
\left\langle m^{N^{\prime}} m^{N^{\prime \prime}}[f] \alpha,\left(r^{\prime}\right),\left(r^{\prime \prime}\right)\right| P\left|m^{N^{\prime}} m^{N^{\prime \prime}}[f] \alpha,\left(\bar{r}^{\prime}\right),\left(\bar{r}^{\prime \prime}\right)\right\rangle \tag{2.14}
\end{equation*}
$$

are linearly related to the $9 f$-symbols for the unitary group introduced by Kramer (1967).

$$
\left(\begin{array}{ccc}
f_{1}^{\prime} & f_{2}^{\prime} & f^{\prime} \tag{2.15}\\
f_{3}^{\prime \prime} & f_{4}^{\prime \prime} & f^{\prime \prime} \\
\overline{f^{\prime}} & \overline{f^{\prime \prime}} & f
\end{array}\right)
$$

The $9 f$-symbols (2.15) are an extension of the $9 j$-symbols for the group $\mathrm{SU}(2)$ to the case of the unitary group of an arbitrary rank m. The $9 f$-symbols are the convolution of six CGC for the group $U(m)$. The linear relationships of (2.14) to (2.15) establish a direct connection between the CGC for the group $\mathrm{U}(m)$ and CGC for the group S_{N}. This is one of the manifestations of the complementarity of the groups $\mathrm{U}(m)$ and S_{N} in the space m^{N}. As a result, the $9 f$-symbols (2.15) can be calculated with the formalism of S_{N} (Kramer 1967, Kramer and Seligman 1969a, b, Sullivan 1973, 1978a, b; Alishauskas 1976). It was noted in the paper (Gurbanovich et al 1971) that arbitrary $3 n f$-symbols for the unitary group also depend only on the values of the Young schemes and can be calculated with the formalism of S_{N}.

In the present paper we propose a concrete method for calculating the CGC for the group $\mathrm{U}(m)$ for the reduction (2.6) by means of the formalism of S_{N}. We shall proceed from the definitions (2.9) and (2.12). Using the orthogonality relations (2.13) the equalities (2.9) and (2.12) are readily rewritten in the form

$$
\begin{align*}
& \mid m^{N}[f] \alpha,(r=\left.\left.r^{\prime} \rho^{\prime \prime}\right)\right\rangle \\
&= \sum_{\gamma} \sum_{f^{\prime \prime}, r^{\prime \prime}} \sum_{\alpha^{\prime}, \alpha^{\prime \prime}}\left\langle\{f\}\left(r^{\prime} \rho^{\prime \prime}\right) \mid\left\{f^{\prime}\right\}\left(r^{\prime}\right),\left\{f^{\prime \prime}\right\}\left(r^{\prime \prime}\right)\right\rangle_{\gamma}\left\langle_{\left[\begin{array}{cc}
f^{\prime}
\end{array}\right]}^{\alpha^{\prime}} \begin{array}{c}
f^{\prime \prime} \\
\\
\\
\\
\end{array} \alpha^{\prime \prime}\right. \\
&\left.\hline m^{N^{\prime}}\left[f^{\prime}\right] \alpha^{\prime},\left(r^{\prime}\right)\right\rangle\left|m^{N^{\prime \prime}}\left[f^{\prime \prime}\right] \alpha^{\prime \prime},\left(r^{\prime \prime}\right)\right\rangle . \tag{2.16}
\end{align*}
$$

In the next section, using the lemma of factorisation of CGC (Racah 1949), we factorise

$$
\left\langle\begin{array}{cc|c}
{\left[f^{\prime}\right]} & {\left[f^{\prime \prime}\right]} & {[f]} \\
\alpha^{\prime} & \alpha^{\prime \prime} & \alpha
\end{array}\right\rangle_{\gamma}
$$

into terms depending on the Young schemes and in § 4 we express these factors via the TM and CGC for the group S_{N}. In $\S 5$, the total fractional parentage coefficients in the multi-quark systems are calculated using the CGC for the group $\mathrm{U}_{C S T}(12)$. It will be noted that it is the fractional parentage expansion of the N-particle wavefunction into the states in the subsystems of N^{\prime} and $N^{\prime \prime}$ particles that is given by the formula (2.16).

3. The scalar factors of the Clebsch-Gordan coefficients for unitary groups

First, consider a simple example, i.e. the $C G C$ for the group $U_{C}(3)$ in the reduction

$$
\begin{equation*}
\mathrm{U}_{C}(3) \supset \mathrm{O}_{C}(3) \supset \mathrm{O}_{C}(2) \tag{3.1}
\end{equation*}
$$

Let C, C_{Z} be the invariants of the group $\mathrm{O}_{C}(3)$ and $\mathrm{O}_{C}(2)$ (where C is the 'colour moment'). Introducing the index ω_{C} labelling the equivalent representations C, C_{z} in the irrep of group $U_{C}(3)$ we write down a complete set of the inner quantum numbers $\mathrm{U}_{C}(3)$ as

$$
\alpha_{C}=\omega_{C}, C, C_{z}
$$

The basis $\left|3^{N^{\prime}}\left[f_{C}^{\prime}\right] \alpha_{C}^{\prime},\left(r_{C}^{\prime}\right)\right\rangle\left|w^{N^{\prime \prime}}\left[f_{C}^{\prime \prime}\right] \alpha_{C}^{\prime \prime},\left(r_{C}^{\prime \prime}\right)\right\rangle$ can be reduced in two stages. First, the states with the defined value of C, C_{z} are obtained using the CGC for the group $\mathrm{O}_{C}(3)$ $\left(C^{\prime} C_{z}^{\prime} C^{\prime \prime} C_{z}^{\prime \prime} \mid C C_{z}\right)$. Then the linear combinations of the states obtained are used to obtain the basis of the irrep $D^{\left[f_{c}\right]}$ $\left|3^{N^{\prime}} 3^{N^{\prime \prime}}\left[f_{C}\right] \omega_{C} C C_{z},\left(r_{C}^{\prime}\right),\left(r_{C}^{\prime \prime}\right)\right\rangle_{\gamma_{C}}$

$$
\begin{align*}
= & \sum_{\omega_{C}^{\prime}, C^{\prime}, \omega_{C}^{\prime \prime}, C^{\prime \prime}}\left\langle\begin{array}{cc}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} \\
\omega_{C}^{\prime}, C^{\prime} & \omega_{C}^{\prime \prime}, C^{\prime \prime}
\end{array} \begin{array}{c}
{\left[f_{C}\right]} \\
\omega_{C}, C
\end{array}\right\rangle_{\gamma_{C} C_{z}^{\prime}, C_{z}^{\prime \prime}}\left(C^{\prime} C_{z}^{\prime} C^{\prime \prime} C_{z}^{\prime \prime} \mid C C_{z}\right) \\
& \times\left|3^{N^{\prime}}\left[f_{C}^{\prime}\right] \omega_{C}^{\prime} C^{\prime} C_{z}^{\prime},\left(r_{C}^{\prime}\right)\right\rangle\left|3^{N^{\prime \prime}}\left[f_{C}^{\prime \prime}\right] \omega_{C}^{\prime \prime} C^{\prime \prime} C_{z}^{\prime \prime},\left(r_{C}^{\prime \prime}\right)\right\rangle . \tag{3.2}
\end{align*}
$$

The first cofactor in the right-hand side (3.3) is the so-called scalar factor (sF) of CGC for the group $\mathrm{U}_{C}(3)$ in the reduction $\mathrm{U}_{C}(3) \supset \mathrm{O}_{C}(3)$. It depends only on the invariants of the group $\mathrm{U}_{C}(3)$ and $\mathrm{O}_{C}(3)$. If the CGC for the group $\mathrm{U}_{C}(3)$ is known, the sF can be expressed through the CGC by the relation

$$
\begin{align*}
\mathrm{SF}_{C} \equiv\left\langle\begin{array}{cc}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} \\
\omega_{C}^{\prime}, C^{\prime} & \omega_{C}^{\prime \prime}, C^{\prime \prime}
\end{array}\right. & \left.\begin{array}{c}
{\left[f_{C}\right]} \\
\omega_{C}, C
\end{array}\right\rangle_{\gamma_{C}} \\
& =\sum_{C_{z}^{\prime}, C_{z}^{\prime \prime}}\left(C^{\prime} C_{z}^{\prime} C^{\prime \prime} C_{z}^{\prime \prime} \mid C C_{z}\right)
\end{align*}\left\langle\left.\begin{array}{cc}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} \tag{3.3}\\
\alpha_{C}^{\prime} & \alpha_{C}^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{c}
{\left[f_{C}\right]} \\
\alpha_{C}
\end{array}\right\rangle_{\gamma_{C}} .
$$

By analogy with this result we factorise the scalar factors of CGC for the group $\mathrm{U}_{C S T}$ (12) for all members of the reduction chain (1.1):
(1) SF_{C}-for the reduction $\mathrm{U}_{C}(3) \supset \mathrm{O}_{C}(3)$, where

$$
\begin{equation*}
\alpha_{C}=\omega_{C}, C, C_{z} \tag{3.4}
\end{equation*}
$$

(2) $S F_{C S}$-for the reduction $U_{C S}(6) \supset \mathrm{U}_{C}(3) \times \mathrm{U}_{s}(2)$, where

$$
\begin{equation*}
\alpha_{C S}=\omega_{C S},\left(\left[f_{C}\right] \alpha_{C}, S S_{z}\right) \tag{3.5}
\end{equation*}
$$

(3) $\mathrm{SF}_{C S T}$-for the reduction $\mathrm{U}_{C S T}(12) \supset \mathrm{U}_{C S}(6) \times \mathrm{U}_{T}(2)$, where

$$
\begin{equation*}
\alpha_{C S T}=\omega_{C S T},\left(\left[f_{C S}\right] \alpha_{C S}, T T_{z}\right) \tag{3.6}
\end{equation*}
$$

It will be shown in the next section that $\omega_{C S}, \omega_{C S T}$ are the multiplicity indices in the inner products of the Young schemes.

As a result, we obtain the following generalisation of (3.2) to the case $\mathrm{U}_{\text {CST }}(12)$.

$$
\begin{aligned}
& \left\langle\begin{array}{cc|c}
{\left[f_{C S T}^{\prime}\right]} & {\left[f_{C S T}^{\prime \prime}\right]} & {\left[f_{C S T}\right]} \\
\alpha_{C S T}^{\prime} & \alpha_{C S T}^{\prime \prime} & \alpha_{C S T}
\end{array}\right\rangle_{\gamma C S T} \\
& =\sum_{\gamma_{C S}}\left\langle\begin{array}{cc||c}
{\left[f_{C S T}^{\prime}\right]} & {\left[f_{C S T}^{\prime \prime}\right]} & {\left[f_{C S T}\right]} \\
\omega_{C S T}^{\prime},\left(\left[f_{C S}^{\prime}\right], T^{\prime}\right) & \omega_{C S T}^{\prime \prime},\left(\left[f_{C S}^{\prime \prime}\right], T^{\prime \prime}\right)
\end{array} \omega_{C S T,}\left(\left[f_{C S}\right], T\right)\right\rangle_{\gamma_{C S T},} \\
& \times\left(T^{\prime} T_{z}^{\prime} T^{\prime \prime} T_{z}^{\prime \prime} \mid T T_{z}\right)
\end{aligned}
$$

$$
\begin{align*}
& \times \sum_{\gamma_{C}}\left\langle\begin{array}{cc|c}
{\left[f_{C S}^{\prime}\right]} & {\left[f_{C S}^{\prime \prime}\right]} & {\left[f_{C S}\right]} \\
\omega_{C S}^{\prime},\left(\left[f_{C}^{\prime}\right], S^{\prime}\right) & \omega_{C S}^{\prime \prime},\left(\left[f_{C}^{\prime \prime}\right], S^{\prime \prime}\right) & \omega_{C S},\left(\left[f_{C}\right], S\right)
\end{array}\right\rangle_{\gamma_{C S} \gamma_{C}} \\
& \times\left(S^{\prime} S_{z}^{\prime} S^{\prime \prime} S_{z}^{\prime \prime} \mid S S_{z}\right) \\
& \times\left\langle\begin{array}{cc||c}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} & {\left[f_{C}\right]} \\
\omega_{C}^{\prime}, C^{\prime} & \omega_{C}^{\prime \prime}, C^{\prime \prime} & \omega_{C}, C
\end{array}\right\rangle_{\gamma C}\left(C^{\prime} C_{z}^{\prime} C^{\prime \prime} C_{z}^{\prime \prime} \mid C C_{z}\right) . \tag{3.7}
\end{align*}
$$

Each of the scalar factors $\mathrm{SF}_{C S T}, \mathrm{SF}_{C S}, \mathrm{SF}_{C}$ can be determined by the relation of type (3.3). The lower line in (3.7) is the CGC for the group $U_{C}(3)$, the two last lines in (3.7) are the CGC for the group $U_{C S}(6)$, etc. Using the orthogonality relation (2.11) for the CGC of subgroups one can always deduce from (3.7) the relations of type (3.3). For example,

$$
\begin{align*}
& \mathrm{SF}_{C S} \equiv\left\langle\begin{array}{cc|}
{\left[f_{C S}^{\prime}\right]} & {\left[f_{C S}^{\prime \prime}\right]} \\
\omega_{C S}^{\prime},\left(\left[f_{C}^{\prime}\right], \boldsymbol{S}^{\prime}\right) & \omega_{C S}^{\prime \prime},\left(\left[f_{C}^{\prime \prime}\right], \boldsymbol{S}^{\prime \prime}\right)
\end{array} \omega_{C S},\left(\left[f_{C S}\right], \boldsymbol{S}\right)\right\rangle_{\gamma_{C S} \gamma_{C}} \\
& =\sum_{\alpha_{C}^{\prime}, \alpha_{C}^{\prime \prime} S_{z}^{\prime}, S_{z}^{\prime \prime}} \sum_{c c \mid c} \begin{array}{cc}
{\left[f_{C S}^{\prime}\right]} & {\left[f_{C S}^{\prime \prime}\right]} \\
\alpha_{C S}^{\prime} & \alpha_{C S}^{\prime \prime}
\end{array}\left|\begin{array}{c}
{\left[f_{C S}\right]} \\
\alpha_{C S}
\end{array}\right\rangle_{y_{C S}} \\
& \times\left\langle\begin{array}{cc|c}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} & {\left[f_{C}\right]} \\
\alpha_{C}^{\prime} & \alpha_{C}^{\prime \prime} & \alpha_{C}
\end{array}\right\rangle_{\gamma C}\left(\boldsymbol{S}^{\prime} \boldsymbol{S}_{z}^{\prime} \boldsymbol{S}^{\prime \prime} \boldsymbol{S}_{z}^{\prime \prime} \mid \boldsymbol{S} \boldsymbol{S}_{z}\right) . \tag{3.8}
\end{align*}
$$

4. Calculation of the scalar factors

In order to calculate the scalar factor $\mathrm{SF}_{a b}$ of the CGC for the unitary group $\mathrm{U}_{a b}(m)$ for the chain (2.6) $\mathrm{U}_{a b}(m) \supset \mathrm{U}_{a}\left(m_{a}\right) \times \mathrm{U}_{b}\left(m_{b}\right)$ we use the main relation (2.16) from $\S 2$ in the form

$$
\begin{align*}
&\left.\left(m_{a} m_{b}\right)^{N}\left[f_{a b}\right] \alpha_{a b},\left(r_{a b}=r_{a b}^{\prime} \rho_{a b}^{\prime \prime}\right)\right\rangle \\
&= \sum_{\gamma_{a b}} \sum_{f_{a b}^{\prime \prime}, r_{a b}^{\prime \prime}} \sum_{\alpha_{a b}^{\prime}, \alpha_{a b}^{\prime \prime}}\left\langle\left\{f_{a b}\right\}, \rho_{a b}^{\prime \prime} \mid\left\{f_{a b}^{\prime}\right\},\left\{f_{a b}^{\prime \prime}\right\}\left(r_{a b}^{\prime \prime}\right)\right\rangle_{\gamma_{a b}} \\
& \times\left\langle\begin{array}{cc}
{\left[f_{a b}^{\prime \prime}\right]} & {\left[f_{a b}^{\prime \prime}\right]} \\
\alpha_{a b}^{\prime} & \alpha_{a b}^{\prime \prime}
\end{array} \begin{array}{c}
{\left[f_{a b}\right]} \\
\alpha_{a b}
\end{array}\right\rangle_{\gamma_{a b}} \\
& \times\left|\left(m_{a} m_{b}\right)^{N^{\prime}}\left[f_{a b}^{\prime}\right] \alpha_{a b}^{\prime},\left(r_{a b}^{\prime}\right)\right\rangle\left|\left(m_{a} m_{b}\right)^{N^{\prime \prime}}\left[f_{a b}^{\prime \prime}\right] \alpha_{a b}^{\prime \prime},\left(r_{a b}^{\prime \prime}\right)\right\rangle \tag{4.1}
\end{align*}
$$

where the CGC for the group $\mathrm{U}_{a b}(m)$ will be written as

$$
\begin{align*}
& \left\langle\begin{array}{cc|c}
{\left[f_{a b}^{\prime}\right]} & {\left[f_{a b}^{\prime \prime}\right]} & {\left[f_{a b}\right]} \\
\alpha_{a b}^{\prime} & \alpha_{a b}^{\prime \prime} & \alpha_{a b}
\end{array}\right\rangle_{\gamma_{a b}} \\
& =\sum_{\gamma_{a}, \gamma_{b}}\left\langle\begin{array}{cc||c}
{\left[f_{a b}^{\prime}\right]} & {\left[f_{a b}^{\prime \prime}\right]} & {\left[f_{a b}\right]} \\
\omega_{a b}^{\prime},\left(\left[f_{a}^{\prime}\right],\left[f_{b}^{\prime}\right]\right) & \omega_{a b}^{\prime \prime},\left(\left[f_{a}^{\prime \prime}\right],\left[f_{b}^{\prime \prime}\right]\right)
\end{array} \omega_{a b},\left(\left[f_{a}\right],\left[f_{b}\right]\right)\right\rangle_{\gamma_{a b} \gamma_{a} \gamma_{b}} \\
& \times\left\langle\begin{array}{cc|c}
{\left[f_{a}^{\prime}\right]} & {\left[f_{a}^{\prime \prime}\right]} & {\left[f_{a}\right]} \\
\alpha_{a}^{\prime} & \alpha_{a}^{\prime \prime} & \alpha_{a}
\end{array}\right\rangle_{\gamma_{a}}\left\langle\begin{array}{cc|c}
{\left[f_{b}^{\prime}\right]} & {\left[f_{b}^{\prime \prime}\right]} & {\left[f_{b}\right]} \\
\alpha_{b}^{\prime} & \alpha_{b}^{\prime \prime} & \alpha_{b}
\end{array}\right\rangle_{\gamma_{b}} . \tag{4.2}
\end{align*}
$$

The quantum numbers $\alpha_{a b}, \alpha_{a b}^{\prime}, \alpha_{a b}^{\prime \prime}$ are specified in (2.7) and (3.4)-(3.6). The appearance of the indices $\omega_{a b}, \omega_{a b}^{\prime}, \omega_{a b}^{\prime \prime}$ will be explained in the following.

The state vector (4.1) can also be determined in the space product $m_{a}^{N} \times m_{b}^{N}$ by reducing the inner product of the irreps $\left\{f_{a}\right\} \circ\left\{f_{b}\right\}$ using the CGC for the group S_{N} (Hammermesh 1964)

$$
\begin{align*}
& \left|\left(m_{a} m_{b}\right)^{N}\left[f_{a b}\right] \alpha_{a b},\left(r_{a b}\right)\right\rangle \\
& \quad=\sum_{r_{a}, r_{b}}\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \\
\left(r_{a}\right) & \left(r_{b}\right) & \left(r_{a b}\right)
\end{array}\right] \omega_{\omega_{a b}}\left|m_{a}^{N}\left[f_{a}\right] \alpha_{a},\left(r_{a}\right)\right\rangle\left|m_{b}^{N}\left[f_{b}\right] \alpha_{b},\left(r_{b}\right)\right\rangle . \tag{4.3}
\end{align*}
$$

The corresponding Clebsch-Gordan series for the inner product of the Young schemes

$$
\begin{equation*}
\left\{f_{a}\right\} \circ\left\{f_{b}\right\}=\sum_{f_{a b}} \nu_{f}\left\{f_{a b}\right\} \tag{4.4}
\end{equation*}
$$

contains the multiplicities ($\nu_{f} \geqslant 1$). In order to distinguish between the equivalent representations $\left\{f_{a b}\right\}$ at $\nu_{f}>1$ we introduce an index $\omega_{a b}=1,2, \ldots, \nu_{f}$. In this case the CGC for the group S_{N} can be given in the form orthogonalised with respect to the index $\omega_{a b}$ (Hammermesh 1964)

$$
\begin{gather*}
\sum_{r_{a,} r_{b}}\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \\
\left(r_{a}\right) & \left(r_{b}\right) & \left(r_{a b}\right)
\end{array}\right]_{\omega_{a b}}\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{\bar{f}_{a b}\right\} \\
\left(r_{a}\right) & \left(r_{b}\right) & \left(\bar{r}_{a b}\right)
\end{array}\right]_{\bar{\omega}_{a b}} \\
=\delta_{f_{a b} \bar{f}_{a b} \delta_{r_{a b} \bar{F}_{a b}} \delta_{\omega_{a b} \bar{w}_{a b} .}} \tag{4.5}
\end{gather*}
$$

The sought-for $\mathrm{SF}_{a b}$ will be obtained as follows. In the right- and left-hand sides of the main relation (4.1) we go over to an expansion in the elementary basis

$$
\begin{equation*}
\Psi_{i}=\left|m_{a}^{N^{\prime}}\left[f_{a}^{\prime}\right] \alpha_{a}^{\prime},\left(r_{a}^{\prime}\right)\right\rangle\left|m_{a}^{N^{\prime \prime}}\left[f_{a}^{\prime \prime}\right] \alpha_{a}^{\prime \prime},\left(r_{a}^{\prime \prime}\right)\right\rangle\left|m_{b}^{N^{\prime}}\left[f_{b}^{\prime}\right] \alpha_{b}^{\prime},\left(r_{b}^{\prime}\right)\right\rangle\left|m_{b}^{N^{\prime \prime}}\left[f_{b}^{\prime \prime}\right] \alpha_{b}^{\prime \prime},\left(r_{b}^{\prime \prime}\right)\right\rangle . \tag{4.6}
\end{equation*}
$$

For this purpose we insert in the right-hand side of (4.1), the expansions (4.3) in the subspaces $\left(m_{a} m_{b}\right)^{N^{\prime}}$ and $\left(m_{a} m_{b}\right)^{N^{\prime \prime}}$. The substitutions in the left-hand side of (4.1) are made in two stages. First, the expansion (4.3) in the space ($\left.m_{a} m_{b}\right)^{N}$ is substituted and then both the vectors in the spaces $\left(m_{a}\right)^{N}$ and $\left(m_{b}\right)^{N}$ are expanded in the basis $m_{a}^{N^{\prime}} m_{a}^{N^{\prime \prime}}$ and $m_{b}^{N^{\prime}} m_{b}^{N^{\prime \prime}}$ using the relation (2.16). Equating the coefficients at the same functions (4.6) in the right- and left-hand sides of the equality obtained, we arrive at the following set of equations for the CGCs for the group $\mathrm{U}_{a b}(m)$

$$
\begin{align*}
& \sum_{\rho_{a, \rho_{b}^{\prime \prime}}}\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \\
\left(r_{a}\right) & \left(r_{b}\right) & \left(r_{a b}\right)
\end{array}\right]_{\omega_{a b}} \sum_{\gamma_{a}}\left\langle\left\{f_{a}\right\}, \rho_{a}^{\prime \prime} \mid\left\{f_{a}^{\prime}\right\},\left\{f_{a}^{\prime \prime}\right\}\left(r_{a}^{\prime \prime}\right)\right\rangle_{\gamma_{a}}\left\langle\begin{array}{cc|c}
{\left[f_{a}^{\prime}\right]} & {\left[f_{a}^{\prime \prime}\right]} & {\left[f_{a}\right]} \\
\alpha_{a}^{\prime} & \alpha_{a}^{\prime \prime} & \alpha_{a}
\end{array}\right\rangle_{\gamma_{a}} \\
& \times \sum_{\gamma_{b}}\left\langle\left\{f_{b}\right\}, \rho_{b}^{\prime \prime} \mid\left\{f_{b}^{\prime}\right\},\left\{f_{b}^{\prime \prime}\right\}\left(r_{b}^{\prime \prime}\right)\right\rangle_{\gamma_{b}}\left(\begin{array}{cc|c}
{\left[f_{b}^{\prime}\right]} & {\left[f_{b}^{\prime \prime}\right]} & {\left[f_{b}\right]} \\
\alpha_{b}^{\prime} & \alpha_{b}^{\prime \prime} & \alpha_{b}
\end{array}\right\rangle_{\gamma_{b}} \\
& =\sum_{\gamma_{a b}} \sum_{f_{a b}^{\prime \prime}, r_{a b}^{\prime \prime}} \sum_{\omega_{a b}, \omega_{a b}^{\prime \prime}}\left\langle\left\{f_{a b}\right\}, \rho_{a b}^{\prime \prime} \mid\left\{f_{a b}^{\prime}\right\},\left\{f_{a b}^{\prime \prime}\right\}\left(r_{a b}^{\prime \prime}\right)\right\rangle_{\gamma_{a b}} \\
& \times\left\langle\begin{array}{cc|c}
{\left[f_{a b}^{\prime}\right]} & {\left[f_{a b}^{\prime \prime}\right]} & {\left[f_{a b}\right]} \\
\alpha_{a b}^{\prime} & \alpha_{a b}^{\prime \prime} & \alpha_{a b}
\end{array}\right\rangle_{\gamma_{a b}}\left[\begin{array}{cc|c}
\left\{f_{a}^{\prime}\right\} & \left\{f_{b}^{\prime}\right\} & \left\{f_{a b}^{\prime}\right) \\
\left(r_{b}^{\prime}\right) & \left(r_{a b}^{\prime}\right)
\end{array}\right]_{\omega_{a b}^{\prime}} \\
& \times\left[\begin{array}{ll|l}
\begin{cases}\left\{f_{a}^{\prime \prime}\right\} & \left\{f_{b}^{\prime \prime}\right\} \\
\left(r_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime \prime}\right)\end{cases} & \left\{\begin{array}{l}
\left.f_{a b}^{\prime \prime}\right\} \\
\left(r_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}^{\prime \prime}} .
\end{array}\right. \tag{4.7}
\end{align*}
$$

The solution of (4.7) is obtained from the orthogonality properties (2.11), (2.12) and (4.5) and has the form

$$
\begin{align*}
& \left.\sum_{\alpha_{a}^{\prime}, \alpha_{a}^{\prime \prime} \alpha_{b}^{\prime} \alpha_{b}^{\prime \prime}} \sum_{\substack{\left[f_{a b}^{\prime}\right] \\
\alpha_{a b}^{\prime} \\
\hline \\
\alpha_{a b}^{\prime \prime} \\
\alpha_{a b}^{\prime \prime}}}\left|\begin{array}{c}
{\left[f_{a b}\right]} \\
\alpha_{a b}
\end{array}\right\rangle\right\rangle_{\gamma_{a b}}\left\langle\left.\begin{array}{cc}
{\left[f_{a}^{\prime}\right]} & {\left[f_{a}^{\prime \prime}\right]} \\
\alpha_{a}^{\prime} & \alpha_{a}^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{c}
{\left[f_{a}\right]} \\
\alpha_{a}
\end{array}\right\rangle_{\gamma_{a}}\left\langle\left.\begin{array}{cc}
{\left[f_{b}^{\prime}\right]} & {\left[f_{b}^{\prime \prime}\right]} \\
\alpha_{b}^{\prime} & \alpha_{b}^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{c}
{\left[f_{b}\right]} \\
\alpha_{b}
\end{array}\right\rangle_{\gamma_{b}} \\
& =\sum_{r_{a}^{\prime}, r_{b}^{\prime}} \sum_{r_{a}^{\prime}, r_{b}^{\prime \prime}}\left[\begin{array}{cc|c}
\left\{f_{a}^{\prime}\right\} & \left\{f_{b}^{\prime}\right\} & \left\{f_{a b}^{\prime}\right\} \\
\left(r_{a}^{\prime}\right) & \left(r_{b}^{\prime}\right) & \left(r_{a b}^{\prime}\right)
\end{array}\right]_{\omega_{a b}^{\prime}}\left[\begin{array}{cc|c}
\left\{f_{a}^{\prime \prime}\right\} & \left\{f_{b}^{\prime \prime}\right\} & \left\{f_{a b}^{\prime \prime}\right\} \\
\left(r_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime \prime}\right) & \left(r_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}^{\prime \prime}} \\
& \times \sum_{\rho_{a, ~}^{\prime}, \rho_{b}^{\prime \prime}, \rho_{a b}^{\prime \prime}}\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \\
\left(r_{a}^{\prime} \rho_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime} \rho_{b}^{\prime \prime}\right) & \left(r_{a b}^{\prime} \rho_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}}\left\langle\left\{f_{a b}\right\}, \rho_{a b}^{\prime \prime} \mid\left\{f_{a b}^{\prime}\right\},\left\{f_{a b}^{\prime \prime}\right\}\left(r_{a b}^{\prime \prime}\right)\right\rangle_{\gamma_{a b}} \\
& \times\left\langle\left\{f_{a}\right\}, \rho_{a}^{\prime \prime} \mid\left\{f_{a}^{\prime}\right\},\left\{f_{a}^{\prime \prime}\right\}\left(r_{a}^{\prime \prime}\right)\right\rangle_{\gamma_{a}}\left\langle\left\{f_{b}\right\}, \rho_{b}^{\prime \prime} \mid\left\{f_{b}^{\prime}\right\},\left\{f_{b}^{\prime \prime}\right\}\left(r_{b}^{\prime \prime}\right)\right\rangle_{\gamma_{b}} . \tag{4.8}
\end{align*}
$$

The left-hand side of the equality (4.8) is the scalar factor of CGC for the unitary group $\mathrm{U}_{a b}(n)$ introduced in (4.2)
$\mathrm{SF}_{a b}^{\mathrm{U}}=\left\langle\begin{array}{cc||c}{\left[f_{a b}^{\prime}\right]} & {\left[f_{b}^{\prime \prime}\right]} & {\left[f_{a b}\right]} \\ \omega_{a b}^{\prime},\left(\left[f_{a}^{\prime}\right],\left[f_{b}^{\prime}\right]\right) & \omega_{a b}^{\prime \prime},\left(\left[f_{a}^{\prime \prime}\right],\left[f_{b}^{\prime \prime}\right]\right) & \omega_{a b},\left(\left[f_{a}\right],\left[f_{b}\right]\right)\end{array}\right\rangle_{\gamma_{a b} \gamma_{a} \gamma_{b}}$
The right-hand side of the equality (4.8) contains the analogous quantity (the scalar factor $\mathrm{SF}_{a b}^{\mathrm{S}}$) for the symmetric group S_{N}. The last two lines of the equality (4.8) may be denoted by:

$$
\left[\begin{array}{cc|c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \tag{4.10}\\
\left(r_{a}^{\prime}\right),\left(r_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime}\right),\left(r_{b}^{\prime \prime}\right) & \left(r_{a b}^{\prime}\right),\left(r_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}}^{\gamma_{a b} \gamma_{a} \gamma_{b}}
$$

which is actually a cGC for the group S_{N} for the non-standard reduction (2.8). The right-hand side of the relation (4.8) can now be treated as a definition of the scalar factor of the CGC for the group S_{N}

$$
\begin{align*}
& \mathrm{SF}_{a b}^{S} \equiv\left[\begin{array}{cc||c}
\left\{f_{a}\right\} & \left\{f_{b}\right\} & \left\{f_{a b}\right\} \\
\gamma_{a},\left(\left\{f_{a}^{\prime}\right\},\left\{f_{a}^{\prime \prime}\right\}\right) & \gamma_{b},\left(\left\{f_{b}^{\prime}\right\},\left\{f_{b}^{\prime \prime}\right\}\right) & \gamma_{a b},\left(\left\{f_{a b}^{\prime}\right\},\left\{f_{a b}^{\prime \prime}\right\}\right)
\end{array}\right]_{\omega_{a b} \omega_{a b}^{\prime} \omega_{a b}^{\prime \prime}} \\
& =\sum_{r_{a}^{\prime}, r_{a}^{\prime \prime}} \sum_{r_{b}^{\prime}, r_{b}^{\prime \prime}}\left[\left.\begin{array}{cc}
\left\{f_{a}\right\} & \left\{f_{b}\right\} \\
\left(r_{a}^{\prime}\right),\left(r_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime}\right),\left(r_{b}^{\prime \prime}\right)
\end{array} \right\rvert\, \begin{array}{c}
\left\{f_{a b}\right\} \\
\left(r_{a b}^{\prime}\right),\left(r_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}}^{\gamma_{a b} \gamma_{a} \gamma_{b}} \\
& \times\left[\begin{array}{cc|c}
\left\{f_{a}^{\prime}\right\} & \left\{f_{b}^{\prime}\right\} & \left\{f_{a b}^{\prime}\right\} \\
\left(r_{a}^{\prime}\right) & \left(r_{b}^{\prime}\right) & \left(r_{a b}^{\prime}\right)
\end{array}\right]_{\omega_{a b}}\left[\begin{array}{cc|c}
\left\{f_{a}^{\prime \prime}\right\} & \left\{f_{b}^{\prime \prime}\right\} & \left\{f_{a b}^{\prime \prime}\right\} \\
\left(r_{a}^{\prime \prime}\right) & \left(r_{b}^{\prime \prime}\right) & \left(r_{a b}^{\prime \prime}\right)
\end{array}\right]_{\omega_{a b}} . \tag{4.11}
\end{align*}
$$

Thus, the solution (4.8) to equation (4.7) proves the equality of the scalar factors of the CGC for the unitary and symmetric groups

$$
\begin{equation*}
\mathrm{SF}_{a b}^{\mathrm{U}}=\mathrm{SF}_{a b}^{\mathrm{S}} \tag{4.12}
\end{equation*}
$$

This is a direct consequence of the complementarity of groups $\mathrm{U}_{a b}(m)$ and S_{N} in the space $\left(m_{a} m_{b}\right)^{N}$.

5. The total fractional parentage coefficient of the $\mathbf{N q}$ system

The totally antisymmetric state in the system of N quarks can be written in the form
$\Psi_{\omega_{X} f \alpha_{C S T}}\left(q^{N}\right)=\sum_{i=1}^{n_{f}} \frac{\Lambda_{i}}{\left(n_{f}\right)^{1 / 2}} \Phi_{\omega_{X} f^{(i)}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N-1}\right)\left|m_{C S T}^{N}[\tilde{f}] \alpha_{C S T}\left(\tilde{r}^{(i)}\right)\right\rangle$
where $\Phi_{\omega_{x} f r^{(i)}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N-1}\right) \text { is the orbital part of the wavefunction with the permu- }-1 .}$ tation symmetry $\{f\}\left(r^{(i)}\right)$ in the quark coordinates $x_{1}, x_{2}, \ldots, x_{N}$;

$$
\begin{equation*}
\xi_{j}=x_{i}-\frac{1}{N-j} \sum_{k=N-j+1}^{N} x_{k}, \quad X=\frac{1}{N} \sum_{j=1}^{N} x_{j} \tag{5.2}
\end{equation*}
$$

are the relative quark coordinates and the centre of mass coordinate; ω_{x} are additional quantum numbers; n_{f} is the dimension of the representation $D^{[f]}$ of the group S_{N}; $\Lambda_{i} / \sqrt{n_{f}}$ is the Clebsch-Gordan coefficient for the group S_{N} (Hammermesh 1964) for the totally antisymmetric state in the inner product of the conjugated Young schemes $\{f\} \circ\{\tilde{f}\} \rightarrow\left\{1^{N}\right\} ; \Lambda_{i}= \pm 1$ is the phase factor of the CGC.

We define the total fractional parentage coefficients (FPC) of the separation of $N^{\prime \prime}$ particles ($q^{N} \rightarrow q^{N^{\prime}} \times q^{N^{\prime \prime}}$) as the coefficients in the expansion of the function (5.1) as a set of products of totally antisymmetric states in the subsystems $q^{N^{\prime}}$ and $q^{N^{\prime \prime}}$ (Neudatchin 1979, Kurdumov 1970)

$$
\begin{align*}
& \times\left\{\varphi_{n l}(R)\left\{\Psi_{\omega_{\dot{x}}^{\prime} f^{\prime} \alpha_{C S T}}\left(q^{N^{\prime}}\right) \Psi_{\omega_{\chi}^{\prime \prime} f^{\prime \prime} \alpha_{C S T}^{\prime \prime}}\left(q^{N^{\prime \prime}}\right)\right\}_{C S T}\right\}_{\eta L} . \tag{5.3}
\end{align*}
$$

The braces $\left\}_{C S T}\right.$ in (5.3) mean the expansion of functions with the defined values of all three-dimensional momenta in the CST space $\boldsymbol{C}=\boldsymbol{C}^{\prime}+\boldsymbol{C}^{\prime \prime}, \boldsymbol{S}=\boldsymbol{S}^{\prime}+\boldsymbol{S}^{\prime \prime}, \boldsymbol{T}=\boldsymbol{T}^{\prime}+\boldsymbol{T}^{\prime \prime}$, and the braces $\left\}_{\eta L}\right.$ mean that among the quantum numbers ω_{X} is the defined value of the total momentum L and of the main orbital quantum number η. $\varphi_{n l}(R)$ are the functions of relative motion of the $N^{\prime} \mathrm{q}$ and $N^{\prime \prime} \mathrm{q}$ clusters,

$$
\begin{equation*}
R=\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} x_{i}-\frac{1}{N^{\prime \prime}} \sum_{j=N^{\prime}+1}^{N} x_{j} \tag{5.4}
\end{equation*}
$$

All the functions in (5.3) are assumed to be normalised to 1 and hence the normalisation of Γ is

$$
\begin{equation*}
\sum_{\omega_{X}^{\prime}, f^{\prime}, \alpha_{\Delta S T}^{\prime}} \sum_{\omega_{X}^{\prime}, f^{\prime \prime}, \alpha_{C S T}^{\prime \prime}} \sum_{n, l}\left|\Gamma_{w_{\dot{x}} f^{\prime} \alpha_{C S T}, \omega_{C S T}^{\prime \prime} \alpha_{C S T}^{\prime \prime}}^{n t w_{X} \alpha_{C S T}}\right|^{2}=1 \tag{5.5}
\end{equation*}
$$

From the definitions (5.1), (5.3) and (5.5) and the formula (3.7) it is easy to obtain an expression for the total fractional parentage coefficient

$$
\begin{align*}
& \Gamma_{\omega, f^{\prime} \alpha^{\prime}}^{n l, \omega_{X} f(} \\
& \Gamma_{\omega_{X}^{\prime}}^{\prime} f^{\prime} \alpha_{C S T}^{\prime}, \omega_{x}^{\prime \prime} f^{\prime \prime} \alpha_{C S T}^{\prime \prime} \\
& =\left(n_{f^{\prime}} n_{f^{\prime \prime}} / n_{f}\right)^{1 / 2}\left(\Phi_{\omega_{\boldsymbol{X}} f} \|\left\{\Phi_{\omega_{\mathbf{X}}^{\prime} f^{\prime}} \Phi_{\omega_{\mathbf{X}} f^{\prime \prime}} \varphi_{\eta_{n}}\right\}_{\eta L}\right) \\
& \left.\times \sum_{\gamma C S T} \sum_{Y C S}\left\langle\begin{array}{cc||c}
{\left[f_{C S T}^{\prime}\right]} & {\left[f_{C S T}^{\prime \prime}\right]} & {\left[f_{C S T}\right]} \\
\omega_{C S T}^{\prime},\left(\left[f_{C S}^{\prime}\right], T^{\prime}\right) & \omega_{C S T}^{\prime \prime},\left(\left[f_{C S}^{\prime \prime}\right], T^{\prime \prime}\right)
\end{array}\right\rangle_{\omega_{C S T},\left(\left[f_{C S}\right], T\right)}\right\rangle_{\gamma_{C S T} \gamma_{C S}} \\
& \left.\left.\times \sum_{\gamma_{C}}\left\langle\begin{array}{cc||c}
{\left[f_{C S}^{\prime}\right]} & {\left[f_{C S}^{\prime \prime}\right]} & {\left[f_{C S}\right]} \\
\omega_{C S}^{\prime},\left(\left[f_{C}^{\prime}\right], S^{\prime}\right) & \omega_{C S}^{\prime \prime},\left(\left[f_{C}^{\prime \prime}\right], S^{\prime \prime}\right)
\end{array}\right\rangle_{\omega_{C S},},\left(f_{C}\right], S\right)\right\rangle_{\gamma C S \gamma_{C}} \\
& \times\left\langle\begin{array}{cc}
{\left[f_{C}^{\prime}\right]} & {\left[f_{C}^{\prime \prime}\right]} \\
\omega_{C}^{\prime}, C^{\prime} & \omega_{C}^{\prime \prime}, C^{\prime \prime}
\end{array} \| \begin{array}{c}
{\left[f_{C}\right]} \\
\omega_{C}, C
\end{array}\right\rangle_{\gamma_{C}} \tag{5.6}
\end{align*}
$$

The first two cofactors in the right-hand side of (5.6), like the other ones, are the scalar factors of the CGC for some unitary groups. Consider this problem, using the wavefunctions of the oscillatory shell model (sm). The general case is an N-quark
 and 1 p states, whose wavefunctions will be denoted as φ_{00} and $\varphi_{1 \mu}, \mu=0, \pm 1$. These
four functions form the basis of a simple irreducible representation of group $U_{X}(4)$, and the N-particle orbital states $\varphi_{i}(1) \varphi_{i}(2) \ldots \varphi_{k}(N)$ are the components of the N th rank tensor in four-dimensional space. Therefore, we can label the orbital shell states with the quantum numbers of group $\mathrm{U}_{X}(4)$.

$$
\begin{equation*}
\tilde{\Phi}_{\omega_{X} f_{X r_{X}}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\left|\mathrm{s}^{N_{\mathrm{s}}} \mathrm{p}^{N_{\mathrm{r}}}\left[f_{X}\right] \alpha_{X},\left(r_{X}\right)\right\rangle_{\mathrm{SM}} \tag{5.7}
\end{equation*}
$$

and include the group $U_{X}(4)$ in the reduction chain (1.1) by adding to it the chains

$$
\begin{align*}
& \mathrm{U}_{X C S T}(48) \supset \mathrm{U}_{X}(4) \times \mathrm{U}_{C S T}(12) \\
& \mathrm{U}_{X}(4) \supset \mathrm{U}_{\mathrm{p}}(3) \supset \mathrm{O}_{X}(3) \supset \mathrm{O}_{X}(2) \tag{5.8}
\end{align*}
$$

Here $\mathrm{O}_{X}(3)$ is the three-dimensional rotation group and so the quantum numbers α_{X} can be written in the form analogous to (3.4)

$$
\begin{equation*}
\alpha_{x}=\tilde{\omega}_{x}, L, L_{z} \tag{5.9}
\end{equation*}
$$

So, the orbital factor in (5.6) in the oscillatory shell model is analogous in form to the factor SF_{C}, for example, at $n=0, l=0$,

$$
\left(\Phi_{\omega f} \|\left\{\Phi_{\omega^{\prime} f^{\prime}} \Phi_{\omega^{\prime \prime} f^{\prime \prime}} \varphi_{00}\right\}_{N_{\mathrm{p}} L}\right)=\left\langle\begin{array}{cc}
{\left[f_{X}^{\prime}\right]} & {\left[f_{X}^{\prime \prime}\right]} \\
\tilde{\omega}_{X}^{\prime}, L^{\prime} & \tilde{\omega}_{X}^{\prime \prime}, L^{\prime \prime}
\end{array} \| \begin{array}{c}
{\left[f_{X}\right]} \\
\tilde{\omega}_{X}, L
\end{array}\right\rangle_{\gamma_{X}}
$$

and the coefficient $\left(n_{f} n_{f^{\prime \prime}} / n_{f}\right)^{1 / 2}$ in (5.6) can be treated as a scalar factor of the CGC for the group $\mathrm{U}_{X C S T}(48) \supset \mathrm{U}_{X}(4) \times \mathrm{U}_{C S T}(12)$. To see this, let us perform a calculation using the formula (4.8) and obtain

$$
\left\langle\begin{array}{cc||c}
{\left[1^{N}\right]_{X C S T}} & {\left[1^{N^{\prime \prime}}\right]_{X C S T}} & {\left[1^{N}\right]_{X C S T}} \\
\left(\left[f^{\prime}\right]_{X},\left[f^{\prime}\right]_{C S T}\right) & \left(\left[f^{\prime \prime}\right]_{X},\left[\tilde{f}^{\prime \prime}\right]_{C S T}\right) & \left([f]_{X},[\tilde{f}]_{C S T}\right)
\end{array}\right\rangle=\left(n_{f} \cdot n_{f^{\prime \prime}} / n_{f}\right)^{1 / 2}
$$

In the orbital factor it is necessary to go over from the shell functions (5.7) $\tilde{\Phi}$ to the translationally invariant functions Φ as in (5.1). To this end, one must factorise in (5.7) the function depending on the CM coordinate $X(5.2)$ and to remove the spurious CM excitations by the rules developed in the translationally invariant shell model (TISM) (Neudatchin et al 1979) which eventually leads to an additional factor $(m / n)^{1 / 2} \leqslant 1$ before the orbital factor
$\mathrm{SF}_{X}=\left(\Phi_{\omega f} \|\left\{\Phi_{\omega^{\prime} f^{\prime}} \Phi_{\omega^{\prime \prime} f^{\prime \prime}} \varphi_{n l}\right\}_{\eta L}\right)_{\mathrm{TISM}}=(m / n)^{1 / 2}\left(\tilde{\Phi}_{\omega f} \|\left\{\tilde{\Phi}_{\omega^{\prime} f^{\prime}} \tilde{\Phi}_{\omega^{\prime \prime} f^{\prime \prime}} \varphi_{n l}\right\}_{n L}\right)_{\mathrm{SM}}$.
Consider a specific example, i.e. the configuration $\mathrm{s}^{4} \mathrm{p}^{2}[42]_{X} L=0,2$. As is known (Neudatchin et al 1979), in this case there are no spurious CM excitations and so the orbital fractional parentage coefficients of the TISM and SM are the same $\left((m / n)^{1 / 2}=1\right)$. We use the quantum numbers of the tism for the states in the two shells (s and p) in the capacity of ω_{X}. In this case it is sufficient to identify ω_{X} with the Young scheme $\left[f_{\mathrm{p}}\right]=\left[f_{\mathrm{p} 1} f_{\mathrm{p} 2} f_{\mathrm{p} 3}\right]$ in the p shell, $N_{\mathrm{p}}=f_{\mathrm{p} 1}+f_{\mathrm{p} 2}+f_{\mathrm{p} 3}=2, N_{\mathrm{s}}=4$. No-more-than-two-row Young schemes are found in the subsystem $N^{\prime}, N^{\prime \prime}, N_{\mathrm{p}}^{\prime}, N_{\mathrm{p}}^{\prime \prime}, N_{\mathrm{p}}$, since we assumed that the orbital Young scheme $\left[f_{x}\right]=[42]$ is two-row. Therefore, the orbital scalar factor (5.10) depends in this case only on the two-row Young schemes and must coincide with the analogous factor for the group $\mathrm{U}(2)$. It was shown (Obukhovsky et al 1979) that if $\left[f_{\mathrm{p}}^{\prime}\right]=\left[N_{\mathrm{p}}^{\prime}\right],\left[f_{\mathrm{p}}^{\prime \prime}\right]=\left[N_{\mathrm{p}}^{\prime \prime}\right],\left[f_{\mathrm{p}}\right]=\left[N_{\mathrm{p}}\right]$, then the following relation holds true

$$
\left.\begin{array}{rl}
\mathrm{SF}_{X} & \equiv\left\langle\begin{array}{cc}
{\left[f_{X}^{\prime}\right]} & {\left[f_{X}^{\prime \prime}\right]} \\
{\left[N_{\mathrm{p}}^{\prime}\right], L^{\prime}} & {\left[N_{\mathrm{p}}^{\prime \prime}\right], L^{\prime \prime}}
\end{array}\right. \\
& =\left(f_{X}\right] \tag{5.11}\\
{\left[\boldsymbol{N}_{\mathrm{p}}\right], L}
\end{array}\right\rangle
$$

where
$j^{\prime}=\frac{1}{2}\left(f_{1}^{\prime}-f_{2}^{\prime}\right), \quad j_{z}^{\prime}=\frac{1}{2}\left(N_{\mathrm{s}}^{\prime}-N_{\mathrm{p}}^{\prime}\right), \quad j^{\prime \prime}=\frac{1}{2}\left(f_{1}^{\prime \prime}-f_{2}^{\prime \prime}\right), \quad j_{z}^{\prime \prime}=\frac{1}{2}\left(N_{\mathrm{s}}^{\prime \prime}-N_{\mathrm{p}}^{\prime \prime}\right)$,
$j=\frac{1}{2}\left(f_{1}-f_{2}\right), \quad j_{z}=\frac{1}{2}\left(N_{\mathrm{s}}-N_{\mathrm{p}}\right), \quad \boldsymbol{N}_{\mathrm{s}}^{\prime}+\boldsymbol{N}_{\mathrm{p}}^{\prime}=\boldsymbol{N}^{\prime}, \quad \boldsymbol{N}_{\mathrm{s}}^{\prime \prime}+\boldsymbol{N}_{\mathrm{p}}^{\prime \prime}=\boldsymbol{N}^{\prime \prime}$,
$\left[f_{X}^{\prime}\right]=\left[f_{1}^{\prime} f_{2}^{\prime}\right], \quad\left[f_{X}^{\prime \prime}\right]=\left[f_{1}^{\prime \prime} f_{2}^{\prime \prime}\right], \quad\left[f_{\boldsymbol{X}}\right]=\left[f_{1} f_{2}\right]$,
$K_{L}=\left[\left(2 L^{\prime}+1\right)\left(2 L^{\prime \prime}+1\right)(2 L+1)\right]^{1 / 2}\left\{\begin{array}{lll}0 & L^{\prime} & L^{\prime} \\ 0 & L^{\prime \prime} & L^{\prime \prime} \\ 0 & L & L\end{array}\right\}=1$.
The formula (5.11) holds true not only for the configuration $s^{4} p^{2}[42]_{x} L=0,2$ for which it was initially derived, but for an arbitrary configuration $\mathrm{s}^{N_{\mathrm{s}}} \mathrm{p}^{N_{\mathrm{p}}}$ for the two-line Young scheme $\left[f_{1} f_{2}\right]_{\boldsymbol{X}}$ as well. In the cases when the Young schemes in the p shell $\left[f_{\mathrm{p}}^{\prime}\right],\left[f_{\mathrm{p}}^{\prime \prime}\right]$, [f_{p}] contain no more than one line, $\mathrm{SF}_{\boldsymbol{X}}$ can be calculated using the standard technique of the two-shell FPC (see for example Neudatchin and Smirnov 1969).

The formalism developed in $\S \S 4$ and 5 , has been used to construct the fractional parentage expansions in the six-quark system. Tables 1,2,3 give the values of the scalar factors $\mathrm{SF}_{C}, \mathrm{SF}_{C S}$ and $\mathrm{SF}_{C S T}$ for the expansions $q^{6} \rightarrow q^{4} \times q^{2}$ and $q^{6} \rightarrow q^{3} \times q^{3}$ in two configurations $s^{6}[6]_{x} L=0$ and $s^{4} p^{2}[42]_{x} L=0$ with the deuteron-like quantum numbers in the $C S T$ space: $\left[2^{3}\right]_{C} C=0, S=1, T=0$. In the configuration $s^{6}[6]_{X}$ the Pauli principle permits but one state

$$
\Psi_{1}=\left|s^{6}[6]_{x} L=0,\left[2^{3}\right]_{S} S=1\left[2^{3}\right]_{C S} T=0\left[1^{6}\right]_{C S T}\right\rangle_{\mathrm{TISM}}
$$

but in the configuration $\mathrm{s}^{4} \mathrm{p}^{2}[42]_{X} L=0$ (or 2) there are already five permitted states that differ only by the Young schemes in the CS space. The permitted Young schemes are contained in the Clebsch-Gordan series for the inner product

$$
\left[2^{3}\right]_{C} \cdot[42]_{s}=[42]_{C S}+[321]_{C S}+\left[2^{3}\right]_{C S}+\left[31^{3}\right]_{c s}+\left[21^{4}\right]_{C S}
$$

Table 1. Scalar factors

$$
\mathbf{S F}_{C}=\left\langle\left.\begin{array}{cc}
{\left[f_{c}^{\prime}\right]} & {\left[f_{c}^{\prime \prime}\right]} \\
C^{\prime} & C^{\prime \prime}
\end{array} \right\rvert\, \begin{array}{c}
{\left[f_{c}\right]} \\
C
\end{array}\right\rangle
$$

for the chain $\mathrm{U}_{\mathcal{E}}(\mathbf{3}) \supset \mathrm{O}_{\mathcal{C}}(\mathbf{3})$.
(a): $N^{\prime}=3, N^{\prime \prime}=3,\left[f_{C}\right]=\left[2^{3}\right], C=0$.
(b): $N^{\prime}=4, N^{\prime \prime}=2,\left[f_{C}\right]=\left[2^{3}\right], C=0$.
(a)

$\left[f_{C}^{\prime}\right] \times\left[f_{C}^{\prime \prime}\right]$	$\left[1^{3}\right] \times\left[1^{3}\right]$		$[21] \times[21]$	
$\left(C^{\prime}, C^{\prime \prime}\right)$	$(0,0)$		$(1,1)$	$(2,2)$
SF_{C}	1	$-\sqrt{\frac{3}{8}}$	$\sqrt{\frac{3}{8}}^{8}$	

(b)

$\left[f_{C}^{\prime}\right] \times\left[f_{C}^{\prime \prime}\right]$	$\left[21^{2}\right] \times\left[1^{2}\right]$		$\left[2^{2}\right] \times[2]$	
$\left(C^{\prime}, C^{\prime \prime}\right)$	$(1,1)$	$(0,0)$	$(2,2)$	
SF_{C}	1	$-\sqrt{\frac{T}{6}}$	$-\sqrt{\frac{5}{6}}$	

Table 2. Scalar factors

$$
\mathbf{S F}_{c s}=\langle\begin{array}{cc}
{\left[f_{c S}^{\prime}\right]} & {\left[f_{c s}^{\prime \prime}\right]} \\
{\left[\left[f_{C}^{\prime}\right], S^{\prime}\right)} & \left(\left[f_{c}^{\prime \prime}\right], S^{\prime \prime}\right)
\end{array} \overbrace{\left(\left[f_{C S}\right], s\right)}\rangle
$$

for the chain $\mathrm{U}_{C S}(6) \supset \mathrm{U}_{C}(3) \times \mathrm{U}_{S}(2)$.
(a): $N^{\prime}=3, N^{\prime \prime}=3,\left[f_{C S}\right]=\left[2^{3}\right],\left[f_{C}\right]=\left[2^{3}\right], S=1$.
(b): $N^{\prime}=3, N^{\prime \prime}=3,\left[f_{C S}\right]=[42],\left[f_{C}\right]=\left[2^{3}\right], S=1$.
(c): $N^{\prime}=4, N^{\prime \prime}=2,\left[f_{C S}\right]=\left[2^{3}\right],\left[f_{C}\right]=\left[2^{3}\right], S=1$.
(d): $N^{\prime}=4, N^{\prime \prime}=2,\left[f_{C S}\right]=[42],\left[f_{C}\right]=\left[2^{3}\right], S=1$.
(a)

$\left[f_{C s}^{\prime}\right] \times\left[f_{C S}^{\prime \prime}\right]$	$\left[1^{3}\right] \times\left[1^{3}\right]$		[21] \times [21]				
$\left[f_{c}^{\prime}\right] S^{\prime}$	$\left[1^{3}\right]^{\frac{3}{2}}$	$\left.{ }^{[21]}\right]^{\frac{1}{2}}$	[$1^{3}{ }^{3} \frac{1}{2}$	[211] ${ }^{\frac{3}{2}}$	$[21]^{\frac{3}{2}}$	${ }^{[21] \frac{1}{2}}$	${ }^{[21]} \frac{1}{2}$
$\left[f_{C}^{\prime \prime}\right] S^{\prime \prime}$	$\left[1^{3}\right]^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$	[$\left.1^{3}\right]^{\frac{1}{2}}$	[21] $]^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{3}$	[21] ${ }^{\frac{1}{5}}$
$\mathrm{SF}_{\mathrm{CS}}$	$-\sqrt{9}$	$\sqrt{\frac{5}{9}}$	$\sqrt{\frac{5}{36}}$	$\sqrt{\frac{1}{36}}$	$\sqrt{\frac{5}{18}}$	$\sqrt{\frac{5}{18}}$	$\sqrt{\frac{5}{18}}$

(b)

$\left[f^{\prime}{ }_{c s}\right] \times\left[f_{c s}^{\prime \prime}\right]$	[3] $\times 3$ [[3] \times [21]		[21] \times [3]		[21] \times [21]				
$\left[f_{C}^{\prime}\right] S^{\prime}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] $]^{\frac{3}{2}}$	[21] ${ }^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] $]^{\frac{1}{2}}$	$\left[1^{3}\right]^{\frac{1}{2}}$
$\left.{ }^{[1} f_{C}^{\prime \prime}\right] S^{\prime \prime}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{3}{2}}$	[21] $]^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] $]^{\frac{1}{2}}$	[21] ${ }^{\frac{3}{2}}$	[21] $]^{\frac{1}{2}}$	$[21]^{\frac{3}{2}}$	[211] ${ }^{\frac{1}{2}}$	$\left[1^{3}\right] \frac{1}{2}$
$\mathrm{SF}_{\text {cs }}$	1	$\sqrt{\frac{1}{5}}$	$-\sqrt{\frac{5}{3}}$	$\sqrt{\frac{4}{5}}$	$\sqrt{\frac{5}{5}}$	$\frac{1}{2}$	$-\sqrt{\frac{1}{10}}$	$\sqrt{\frac{T}{10}}$	$\sqrt{\frac{T}{10}}$	$\sqrt{\frac{9}{20}}$

(c)

$\left[f_{C S}^{\prime}\right] \times\left[f_{C S}^{\prime \prime}\right]$	$\left[2^{2}\right] \times[2]$			$\left[21^{2}\right] \times\left[1^{2}\right]$			
$\left.f_{C}^{\prime}\right] S^{\prime}$	$\left[21^{2}\right] 1$	$\left[2^{2}\right] 2$	$\left[2^{2}\right] 0$	$\left[21^{2}\right] 2$	$\left[21^{2}\right] 1$	$\left[21^{2}\right] 0$	$\left[2^{2}\right] 1$
$\left[f_{C}^{\prime \prime}\right] S^{\prime \prime}$	$\left[1^{2}\right] 0$	[2]1	[2]1	[1^{2}] 1	[$\left.1^{2}\right] 1$	$\left[1^{2}\right] 1$	[2]0
$\mathrm{SF}_{C S}$	$\sqrt{\frac{5}{12}}$	$\sqrt{\frac{7}{6}}$	$-\sqrt{\frac{5}{12}}$	$-\sqrt{\frac{2}{27}}$	$\sqrt{\frac{5}{9}}$	$-\sqrt{\frac{5}{54}}$	$-\sqrt{\frac{5}{18}}$

(d)

$\left[f_{C S}^{\prime}\right] \times\left[f^{\prime \prime}\right.$ cs $]$	$[4] \times[2]$	[31] \times [2]		[31] $\times\left[1^{2}\right]$			$\left[2^{2}\right] \times[2]$		
$\left[f_{c}^{\prime}\right] S^{\prime}$	$\left[2^{2}\right] 0$	$\left[2^{2}\right] 1$	$\left[21^{2}\right] 1$	$\left[2^{2}\right] 1$	$\left[21^{2}\right] 1$	$\left[21^{2}\right] 0$	$\left[2^{2}\right] 0$	$\left[2^{2}\right] 2$	$\left[21^{2}\right] 1$
$\left[f^{\prime \prime}\right] S^{\prime \prime}$	[2]1	$[2] 1$	[$\left.1^{2}\right] 0$	$[2] 0$	$\left[1^{2}\right] 1$	[1^{2}]1	[2]	$[2] 1$	$\left[1^{2}\right] 0$
$\mathrm{SF}_{C S}$	1	$\sqrt{\frac{2}{5}}$	$-\sqrt{\frac{1}{5}}$	$-\sqrt{\frac{T}{10}}$	$\sqrt{\frac{3}{5}}$	$\sqrt{\frac{5}{10}}$	$\sqrt{\frac{1}{20}}$	$-\sqrt{\frac{5}{2}}$	$\sqrt{\frac{9}{10}}$

The most interesting is the state with the Young scheme [42] $]_{C S}$ where the colourmagnetic forces of quantum chromodynamics lead to the strongest quark attraction (Obukhovsky et al 1979). Therefore we have constructed a set of fractional parentage coefficients for the state

$$
\Psi_{2}=\left|\mathrm{s}^{4} \mathrm{p}^{2}[42]_{X} L=0,\left[2^{3}\right]_{C} S=1[42]_{C S} T=0\left[2^{2} 1^{2}\right]_{C S T}\right\rangle_{\mathrm{TISM}} .
$$

In both the cases (Ψ_{1} and Ψ_{2}) the multiplicites are absent from any products (inner and outer) of the Young schemes and consequently the additional quantum numbers ω and γ are not needed.

Table 3. Scalar factors

$$
\mathrm{SF}_{C S T}=\left\langle\begin{array}{cc}
{\left[f_{C S T}^{\prime}\right]} & {\left[f_{C S T}^{\prime \prime}\right]} \\
\left(\left[f_{C S}^{\prime}\right], T^{\prime}\right) & \left(\left[f_{C S]}^{\prime \prime}\right], T^{\prime \prime}\right)
\end{array}\right]
$$

for the chain $U_{C S T}(12) \supset \mathrm{U}_{C S}(6) \times \mathrm{U}_{T}(2)$ and weight coefficients $\left(n_{f^{\prime \prime}} n_{f^{\prime \prime}} / n_{f}\right)^{1 / 2}$.
(a): $N^{\prime}=3, N^{\prime \prime}=3,\left[f_{C S T}\right]=\left[1^{6}\right],\left[f_{C S}\right]=\left[2^{3}\right], T=0$.
(b): $N^{\prime}=3, N^{\prime \prime}=3,\left[f_{C S T}\right]=\left[2^{2} 1^{2}\right],\left[f_{C S}\right]=[42], T=0$.
(c): $N^{\prime}=4, N^{\prime \prime}=2,\left[f_{C S T}\right]=\left[1^{6}\right],\left[f_{C S}\right]=\left[2^{3}\right], T=0$.
(d): $N^{\prime}=4, N^{\prime \prime}=2,\left[f_{C S T}\right]=\left[2^{2} 1^{2}\right],\left[f_{C S}\right]=[42], T=0$.
(a)

$\left[f^{\prime} C S T\right] \times\left[f^{\prime \prime}{ }^{\prime \prime}\right.$] $]$	$\left[1^{2}\right] \times\left[1^{3}\right]$	
[$f_{\text {' }}$ cs] T^{\prime}	$\left[1^{3}\right]^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$
[$f_{c s}^{\prime \prime}$] $T^{\prime \prime}$	$\left[1^{3}\right]^{\frac{3}{2}}$	[21] ${ }^{\frac{1}{2}}$
$\mathrm{SF}_{\text {CST }}$	$\sqrt{\frac{1}{5}}$	$\sqrt{\frac{4}{5}}$
$\sqrt{\frac{n_{f} n_{f}}{n_{f}}}$	1	

(b)

$\begin{gathered} {\left[f_{c s s]}^{\prime}\right]} \\ \times\left[f_{c s r}^{\prime \prime}\right] \end{gathered}$	$\left[1^{3}\right]$	$\left[1^{3}\right] \times[21]$		$[21] \times\left[1^{3}\right]$		[21] \times [21]				
$\left[f^{\prime} \mathrm{Cs}\right] T^{\prime}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[3] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[3] ${ }^{\frac{1}{2}}$	[3] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{3}{2}}$
$\left[f^{\prime \prime}{ }_{C S}\right] T^{\prime \prime}$	[21] ${ }^{\frac{1}{2}}$	[3] $\frac{1}{2}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] $\frac{1}{2}$	[3] ${ }^{\frac{1}{2}}$	[21] $\frac{1}{2}$	[3] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{1}{2}}$	[21] ${ }^{\frac{3}{2}}$
$\mathrm{SF}_{\text {CST }}$	1	$-\sqrt{\frac{4}{5}}$	$-\sqrt{\frac{1}{5}}$	$-\sqrt{\frac{4}{5}}$	$\sqrt{\frac{\pi}{5}}$	$\frac{1}{2}$	$\sqrt{\frac{T}{10}}$	$-\sqrt{\frac{1}{10}}$	$\sqrt{\frac{T}{10}}$	$\sqrt{\frac{9}{20}}$
$\left(\frac{n_{f} n_{r}}{n_{f}}\right)^{1 / 2}$	$\sqrt{\frac{T}{9}}$							$\sqrt{\frac{4}{9}}$		

(c)

$\left[f^{\prime} C S T\right] \times\left[f_{C S T}^{\prime \prime}\right]$	$\left[1^{4}\right] \times\left[1^{2}\right]$	
$\left[f^{\prime}{ }_{c}\right] T^{\prime}$	$\left[22^{2}\right] 1$	$\left.{ }^{[2} 2^{2}\right] 0$
[$f^{\prime \prime}$ cs] ${ }^{\prime \prime}$	[1^{2}] 1	[2]0
$\mathrm{SF}_{\text {CST }}{ }^{1 / 2}$	$\sqrt{\frac{3}{5}}$	$\sqrt{\frac{2}{5}}$
$\left(\frac{n_{f} n_{f}}{n_{f}}\right)^{1 / 2}$	1	

(d)

$\begin{aligned} & {\left[f^{\prime} C S T\right]} \\ & \times\left[f_{C S T}^{\prime \prime}\right] \end{aligned}$	$\begin{gathered} {\left[1^{4}\right]} \\ \times\left[1^{2}\right] \end{gathered}$	$\left[21^{2}\right] \times\left[1^{2}\right]$		$\left[21^{2}\right] \times[2]$			$\left[2^{2}\right] \times\left[1^{2}\right]$		
$\left[f^{\prime}{ }_{c s}\right] T^{\prime}$	$\left.{ }^{[2}{ }^{2}\right] 0$	[31]0	[31]1	[31]1	[2 ${ }^{2}$]1	[31]0	$\left.{ }^{[2}{ }^{2}\right] 0$	[31]1	[4]0
$\left[f_{c c}^{\prime \prime}\right] T^{\prime \prime}$	[2]0	[2]0	$\left[1^{2}\right] 1$	[2]1	[2]1	[12]0	[2]0	[12]1	[2]0
$\mathrm{SF}_{\text {CST }}$	1	$-\sqrt{\frac{2}{5}}$	$-\sqrt{\frac{3}{5}}$	$\sqrt{\frac{3}{5}}$	$-\sqrt{\frac{3}{10}}$	$\sqrt{\frac{1}{10}}$	$\sqrt{\frac{T}{20}}$		$\sqrt{\frac{1}{2}}$
$\left(\frac{n_{f} n^{\prime} n^{\prime}}{n_{f}}\right)^{1 / 2}$	$\sqrt{\frac{\pi}{9}}$	$\sqrt{\frac{3}{9}}$		$\sqrt{\frac{3}{9}}$			$\sqrt{\frac{1}{9}}$		

The fractional parentage coefficients for the configuration $\mathrm{s}^{4} \mathrm{p}^{2}$ have been independently calculated by Harvey (1981) who used another reduction chain, i.e.

$$
\mathrm{U}_{C S T}(12) \supset \mathrm{U}_{C}(3) \times \mathrm{U}_{S T}(4)
$$

The reduction (1.1) used in the present paper is more convenient for calculations with the forces of quantum chromodynamics symmetric with respect to the group $\mathrm{U}_{C S}(6)$ (Jaffe 1977).

Acknowledgment

We wish to express deep gratitude to V G Neudatchin for his interest in our work and many stimulating discussions.

References

Aert A Th M, Mulders P J G and De Swart J J 1978 Phys. Rev. D 17260
Alishauskas S I 1976 Lituan Phys. J. 16359 (in Russian)
Baldin A M 1977 Elementary Particles and Nucl. Phys. (Moscow) 8675
De Grand T A, Jaffe R L, Johnson K and Kiskis J 1975 Phys. Rev. D 122060
De Swart J J 1980 Nijmegen Preprint THEF-NYM-80.6
De Tar C 1978 Phys. Rev. D 17302
Elliott J P, Hope J and Jahn H A 1953 Phil. Trans. R. Soc. A 246241
Flowers B H and Jahn H A 1952 Proc. R. Soc. A 210197
Gel'fand I M and Tsetlin M L 1970 Dokl. Akad. Nauk 71825 (in Russian)
Gurbanovich I S, Smirnov Yu F and Tolstoy V N 1971 Czehos Phys. J. B 21236
Hammermesh M 1964 Group Theory and its Application to Physical Problems (London, Massachusetts: Addison-Wesley)
Harvey M 1981 Nucl. Phys. A 352301 ibid A 352326
Jaffe R L 1977 Phys. Rev. Lett. 38197
Jahn H A 1950 Proc. R. Soc. A 201516

- 1954 Phys. Rev. 96989

Jahn H A and van Wieringen H 1951 Proc. R. Soc. A 209502
Kaplan I G 1962 Tables of transformation matrices of permutation group Preprint Obninsk (in Russian)
--. 1969 Symmetry of many-electron systems (Moscow: Nauka) (in Russian)
Kramer P 1967 Z. Phys. 205181
$\cdots-{ }^{-1968 \text { Z. Phys. } 21668}$
Kramer P and Seligman T H 1969a Nucl. Fhys. A123 161

- 1969b Nucl. Phys. A 136545

Kurdyumov I V, Smirnov Yu F and Shitikova K V 1970 Nucl. Phys. A145 693
Liberman D A 1977 Phys. Rev. D16 1542
Lukyanov V K and Titov A I 1979 Elementary Particles and Nucl. Phys. (Moscow) 10815
Matveyev V A and Sorba P 1977 Nuovo Cim. Lett. 20443
Moshinsky M and Quesne C 1970 J. Math. Phys. 111631
Neudatchin V G and Smirnov Yu F 1969 Nucleon Association in Light Nuclei (Moscow: Nauka)
Neudatchin V G, Smirnov Yu F and Golovanova N F 1979 Adv. Nucl. Phys. 111
Neudatchin V G, Smirnov Yu F and Tamagaki R 1977 Prog. Theor. Phys. 581072
Obukhovsky I T, Neudatchin V G, Smirnov Yu F and Tchuvil'sky Yu M 1979 Phys. Lett. $88 B 231$
Oka M and Yazaki K 1980 Phys. Lett. 90B 41
Racah J 1949 Phys. Rev. 761352
Ribeiro J E 1978 CEMC preprint E6178 (Lisboa)
Smirnov Yu F and Tchuvil'sky Yu M 1978 J. Phys. G: Nucl. Phys. 4 L1
So S and Strottman D 1979 J. Math. Phys. 30153

Sullivan J J 1973 J. Math. Phys. 14387
-_ 1978a J. Math. Phys. 191674
1978b J. Math. Phys. 191681
Toki H 1980 Z. Phys. A 294173
Vanagas V 1971 Algebraic Methods in Nuclear 7heory (Vilnius: Mintis)
Weyl J 1946 The Classical Groups (New York: Academic)
Wigner E P 1959 Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York:
Academic)
Wong C W 1977 Phys. Rev. D 161590

