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On the construction of wavefunctions in the six-quark 
system 

I T Obukhovsky, Yu F Smirnov and Yu M Tchuvil’sky 
Institute of Nuclear Physics, Moscow State University, Moscow 117234, USSR 

Received 5 September 1980, in final form 7 May 1981 

Abstract. A method for calculating the fractional parentage coefficients for many-quark 
systems in the scheme UaT(12)  2) Ucs(6) x Ur(2) 3 Uc(3) Y Us(2) x UT(2) based on the 
complementarity of the permutation SN and unitary U(n) groups, is developed. The scalar 
factors of the Clebsch-Gordan coefficients for the chain of groups U(mn) I> U(m) x U(n) 
are shown to be independent of the ranks mn, m and n of the groups and to be determined 
by the Young schemes associated with them. Tables of fractional parentage coefficients for 
low states of the six-quark (6q) system are presented. 

1. Introduction 

Much attention has recently been given to a study of the role of quarks in nuclear 
structure: the problem of dibaryon resonances (Aert 1978, Neudatchin 1977, De Swart 
1980), the manifestation of quark structures of nuclei in the cumulative effect (Baldin 
1977, Lukyanov and Titov 1979), the derivation of the NN potentials on the basis of 
quark-quark forces (De Tar 1978, Liberman 1977, Wong 1977), a description of the NN 
scattering as a scattering of three-quark clusters (Ribeiro 1978, Oka and Yazaki 1980, 
Toki 1980), the problem of ‘hidden’ colour in the quark systems (Matveyev and Sorba 
1977) and a study of isobar components in the deuteron in terms of the quark model 
(Smirnov and Tchuvil’sky 1978). 

A study of the above problems is reduced to a consideration of the properties of the 
multi-quark systems. In the simple case of the deuteron and NN scattering it involves a 
consideration of the 6q system. For this purpose it is first necessary to construct the 
antisymmetrical wavefunctions of the multi-quark systems in the coloured quark 
model. This problem is urgent both for the theory of quark bags (De Tar 1978, De 
Grand 1975) and for the phenomenological non-relativistic quark model (Ribeiro 
1978, Liberman 1977). 

A conventional method for constructing the wavefunctions of many-particle 
systems with a given non-relativistic symmetry is the technique of fractional parentage 
coefficients (FPC). Below we shall consider the problem of calculating FPC for the 
multi-quark systems and give the tables of their values for the lower states of the system 
of six non-strange quarks U, d. 

According to the Racah lemma (Racah 1949) the FPC is factorised into the orbital, 
spin, colour and isospin parts. The two latter parts are the same in the bag theory and in 
the non-relativistic quark models. The orbital and spin parts in the bag theory are like 
the usual shell FPC in the j j  coupling scheme. A disadvantage of the wavefunctions of 
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the bag theory is that in these states the centre of mass of the quark system suffers 
unphysical vibrations. 

This disadvantage can be eliminated in the non-relativistic oscillator quark model by 
analogy with the translationally invariant shell model (TISM) (Neudatchin et a1 1979). 
Non-relativistic oscillator quark-model calculations can be carried out using FPC for the 
TISM calculated by Kurdyumov (1970). Therefore, the present paper is confined mainly 
to a consideration of the spin-colour-isospin part of the FPC which are the Clebsch- 
Gordan coefficients (CGC) for the group U(12) in the reduction 

The CGC‘ of the type (q6 1 q5, q) ,  (q6 1 q3,  q3)  for the group U(6) in the case of the 6q 
system were calculated by So and Strottman (1979). We shall be concerned with the 
CGC of a more general type for the whole chain of groups (1.1) and also the CGC of the 
type (4‘1 q4, q2) which are most convenient for the spectroscopic calculation. We use 
the Weyl method based on the complementarity of the permutation and unitary groups. 
The complementarity nature of the groups U(m) and S N  is by now very well known. The 
first exploitation of results for S N  in calculations for V ( m )  are those of Jahn (1950, 
1954) and Flowers (1952). These techniques are now textbook material: Vanagas 
,1971 ). In our terminology the main idea of the method is the following. The total 
wavefunction of the system of N qusrks T,(qN) is comprised of the spatial, spin, colour 
and isospin parts. If the noted partial wavefunctions are known, the total wavefunction 
is constructed from them using CGC for the permutation group S N  (see, below, the 
formula (4.3)). The problem of the fractional parentage expansion of the total 
wavefunction is therefore reduced to the construction of fractional parentage expan- 
sions for its separate parts. The FP expansions for the spin and isospin functions are 
known (Jahn and van Wieringen 1951). For the colour part of the function it is possible 
to use the orbital FPC tabulated for the p shell (Jahn and van Wieringen 1951). The FPC 
for the spatial part of the wavefunction are also easily found. The technique of 
calculating the Clebsch-Gordan coefficients for the permutation group SN is described 
in the monograph by Hammermesh (1964). The corresponding transformational 
matrices are studied by Kaplan (1969) and tabulated for N s 6 (Kaplan 1962). So, all 
the components which are necessary and sufficient for constructing the FP expansion of 
the total wavefunction of the system of N quarks ( N  s 6) are available in the literature. 

We shall present the tables of FPC for the lower states of the 6q systems. Some 
general properties of CGC for the group U(m) will be determined. 

2. The complementarity of the groups U(m) and SN 

Let us recall the definition and meaning of the fractional parentage coefficients (FPC) for 
the part of the wavefunction characterised by the symmetry U(m> (m = 2 for the spin (S) 
or isospin ( T )  part, m = 3 for the coloured part (C) etc). Suppose we have N particles 
any of which can be in one of m states xi, x2, . . . , x,,. A set of these states forms the 
basis of a simple irreducible representation (IR) Dcl’ of the group U(m) with the Young 
scheme [l]. The wavefunctions of the system of N particles appear as 
xi( l ) ,  xj(2), . . . , x k ( N ) ,  ( i ,  j ,  k = 1,2,  . . . , m). The total number of the functions is m”. 
In the m-dimensional vector space they form the tensor of rank N. In terms of the group 
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U ( m )  they form the basis of a direct product of N irreducible representations 0‘’’ x 
D‘” x . . . x D‘l’, i.e. the question concerns the power [l]”. This representation is 
reducible and can be expanded into the irreps D‘“ of the group U ( m )  

According to the results of Weyl (1946), this expansion involves the Young schemes 
[f] = [flf;! . . . fm] containing N squares and no more than m rows ( N  = f ~  +f2 + . . . + 
f m ) .  The multiplicity vf of each irrep DCfl in the sum (2.1) is equal to the irrep dimension 
of the same Young scheme {f) but now of the permutation group S N :  

vf = dim{ f } .  (2.2) 

This results from the fact that the space 9 of the representation [l]” stretched over the 
components of the tensor of rank N in the m-dimensional space (m”), can be treated as 
a space of a certain representation of the direct product of groups U ( m )  x S N .  If the 
representation [l]” is expanded into irreps ([fl, {f)) of these two groups, the result of 
Weyl (2.1), (2.2) can be rewritten as 

(2.3) 

This remarkable result shows that in the space 2 of the representation [1IN each irrep 
0‘’’ of the group U ( m )  combines with only one definite irrep of the group S N  with the 
same Young scheme {f}. Due to these properties, the groups U(m) and S N  may be 
called ‘complementary’ within the space 3 (or m”) following the definition of 
‘complimentarity’ suggested by Moshinsky and Quesne (1970). The noted comple- 
mentarity accounts for a strong interrelation between different quantities in the 
representations of the groups U ( m )  and SN.  These interrelations have been discovered 
in a variety of recent papers: Kramer and Seligman (1969a, b), Sullivan (1973), 
Alishauskas (1976), So and Strottman (1979) and Harvey (1981). 

Among the earlier results, it is appropriate to mention the construction of fractional 
parentage coefficients (Jahn 1951, Elliott et a1 1953) in the nuclear shell model using 
the matrix elements of the permutation operators PE SN, which relates, in effect, the 
CGC of the unitary group to similar quantities of the group S N .  Proceeding from these 
results, we have studied in more detail the problem of the interrelation between the CGC 

for the groups U(m) and S N  and have obtained an explicit expression for the CGC of the 
group U ( m )  in the reduction of type (1.1) through the CGC for the group SN.  This 
provides us with a universal method for calculating the CGC for the group U ( m )  of any 
rank if the CGC for the inner product of the irreps of the group S N  are known 
(Hammermesh 1964). 

Just as in the papers (Jahn and van Wieringen 1951, Elliott et a1 1953), we shall use 
for the representations ([fl, {f)) of the group U ( m )  X S N  in the space m”, the Young- 
Yamanouchi basis 

Im”, {f)(r))=l”[fl% b)). (2.4) 

Here, (r) is a Yamanouchi symbol specifying a set of the Young permutation schemes 
{f), {f”-”}, {f”-”}, . . . , {f”} = (1) labelling the irreps of a chain of subgroups 

S N ~ S N - 1 ~ S N - 2 ~ . . . . ~ S 1 *  (2.5) 
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a is a complete set of quantum numbers of the group U(m) labelling the vectors of the 
irrep 0”’. However, for this purpose we shall not use the Gel’fand-Tsetlin basis 
corresponding to the reduction (Gel’fand and Tsetlin 1970) 

U ( m ) > U ( m - 1 ) 3 . .  . X U ( l )  

since it is more interesting for physical applications to use the reduction of the type (1.1) 
into a direct product of subgroups 

Uab(m) =va(ma)xUb(mb),  m = mamb. (2.6) 

The redxtion (2.6) does not provide a complete set of quantum numbers and therefore 
we use, along with the quantum numbers ( [ f a ] * , ,  [ f b l a b )  of the subgroups U,(m,) and 
Llb(mb), an additional quantum number, namely the integer index @ab = 1,2,  . . . , which 
will simply enumerate the equivalent representations of the group Ua(m,) x Ub(mb) in 
a given irrep Drfnb’ of the group U,b(m): 

(2.7) a u b  = Wabr ([fa]*,, [ f b b ’ b ) .  

It will be noted that in the chain ( l . l ) ,  a set of indices (ab, a, b )  are (CS, C, S ) ,  
(CST, CS, T )  and this sequence can be further continued by combining the orbital space 
(X) with the CST space since the orbital states can also be specified by the quantum 
numbers of unitary groups (see 8 5 ) .  

In order to obtain the fractional parentage expansions in the system of N particles 
we should use, along with the Young-Yamanouchi basis (2.4), another basis cor- 
responding to the non-standard reduction 

S N  S N ’  x S N ” ,  N = N ’ + N ” ,  

S N ‘  S N ’ - I  3. . , I> SI (2.8) 

SN” 3 S N L *  3 .  . . 2 s,. 
Divide the N particles into two assemblies 1 ,2 ,  . , . , N’ and N ’  + 1, N ’  + 2, . . . , N and 
successively multiply the representations ( [ f ’ ] ,  { f ’ } )  and ( [ f ’ ] ,  {f’}) defined by the 
functions ImN’[f’]a’, ( r ’ ) )  and (m”‘[f’]a’‘, ( r ” ) )  with the aid of the CGC of group U(m) 

/m”m “‘[fla, ( r ’ ) ,  ( r ” ) ) ,  

[f’l Ef”1 [fl ( r l ) ) ~ m N ” [ f ” ] * I l ,  ( r l l ) ) .  

= U c( .U * I  * ’ I  I *>, (2.9) 

Here, the index y is the additional quantum number labelling the equivalent represen- 
tations in the Clebsch-Gordan series for the outer product (Hammermesh 1964) of the 
Young schemes 

(2.10) 
f 

y = 1 ,2 , .  . . , vr. In (2.9) the Clebsch-Gordan coefficients for the group U(m) are 
assumed to be orthogonalised with respect to the index y 

(2.11) 
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The basis vectors (2.9) are the linear combinations of vectors (2.4) of the Young- 
Yamanouchi basis 

ImN’mN”[fla,  (r‘) ,  (rf‘N, 

= C W } ( r  = r’p’‘)l{f’}(r’), {f“}(r”)),lmNEfIa, ( r  = r ’ ~ ’ ‘ ) ) .  (2.12) 
P” 

The notation utilised in (2.12) is as follows. The Yamanouchi symbol ( r )  which consists 
of N numbers ni, labelling the rows of the standard Young table {f) (i is the particle 
number) 

( r )  = ( n l n z .  . . n i .  . . n N ~ n N ~ + l  . . . nN) 

is divided into two parts. The first part for the particles 1 S i s N‘ corresponds to the 
standard Young table {f’} and the Yamanouchi symbol 

( r ‘ )  = (nIn2. . , ni.  . . nN,) 

but the second part 

p” = nN‘+lnN’+Z . nN 

does not correspond to any definite standard Young scheme. 
The coefficients in the expansion (2.12) are the transformation matrices (TM) which 

were introduced by Elliott er al (1953) and studied by Kaplan (1962), Kramer (1968) 
and Kramer and Seligman (1969a, b). For the case N” = 2 the TM were tabulated by 
Kaplan (1969). The TM satisfy the following orthogonality relations 

c ({fl(r = r’”” if’} { f ” }  V ’ ) ) Y ( { f l  ( r  = r’p”)l if’) ( r ’ ) ,  if,’, (“ 
P“ 

= ~yp&”i#,8* 

1 (2.13) 

that follow from the unitarity of transformation (2.12) with a certain choice of phase 
factors (when the TMS are real). 

It is significant that the TM can be calculated from the equality (2.12) if we operate on 
the right- and left-hand sides of (2.12) by the operators P of the permutation group S N  
using known values of the matrix elements ({f}(r)/P\{f)(7)) in the Young-Yamanouchi 
basis (Hammermesh 1964). In the paper (Kaplan 1969), for example, the TM were 
explicitly expressed in terms of the Young projectors (Jahn 1954) 

({fl ( r  = r’p’’)({f’)  ( r ’ ) ,  {f”) (r’’)), ({f} (F = r’~‘’)l{f’) ( r ’ ) ,  { f ’ }  (r”)),. = S p v *  
Y f“,r” 

When the multiplicities are absent (vf s 1 in (2.10)) 

({fl (dl {f’} (r’) ,  if”) ( r”) ) ,  = (({f) (f)lc!G:, I{f) (W1’*({f) (r)lClQ I{f} (F)). 

On the other hand, knowledge of the matrix elements Dk2(’%) = ( [ f laI ’%/[ f ]G)  of the 
operators 0% for the unitary group ( D  functions) is clearly required (Wigner 1959) to 
calculate the Clebsch-Gordan coefficients for the unitary group which are needed to 
construct the same vector in the space m” x m ”’ (2.9). This is a much more complex 
task as compared with the calculation of ({f}(r)lP\{f)(F)). 
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(3.7) 

Each of the scalar factors SFcsT, SFcs, SFc can be determined by the relation of type 
(3.3). The lower line in (3.7) is the CGC for the group Uc(3), the two last lines in (3.7) 
are the CGC for the group Ucs(6) ,  etc. Using the orthogonality relation (2.11) for the 
CGC of subgroups one can always deduce from (3.7) the relations of type (3.3). For 
example, 

4. Calculation of the scalar factors 

In order to calculate the scalar factor SFab of the CGC for the unitary group Uab(m) for 
the chain (2.6) Uab(m)  3 U a ( m a )  XUb(mb) we use the main relation (2.16) from Q 2 in 
the form 

where the CGC for the group U,,(m) will be written as 

The quantum numbers a a b r  a h b ,  ( Y i b  are specified in (2.7) and (3.4)-(3.6). The 
appearance of the indices @ab, wLb, w:h will be explained in the following. 
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N The state vector (4.1) can also be determined in the space product mf: x mb by 
reducing the inner product of the irreps {fa} 0 { f b }  using the CGC for the group SN 
(Hammermesh 1964) 

(4.3) 

The corresponding Clebsch-Gordan series for the inner product of the Young schemes 

contains the multiplicities ( vf 2 1). In order to distinguish between the equivalent 
representations {fa),} at vf > 1 we introduce an index 0.6 = 1,2, . . . , vf. In this case the 
CGC for the group SN can be given in the form orthogonalised with respect to the index 
0.6 (Hammermesh 1964) 

The sought-for SFab will be obtained as follows. In the right- and left-hand sides of 
the main relation (4.1) we go over to an expansion in the elementary basis 

qi = Imf: ' [ fh~a h, (rh>> Im Y'[ f :  la  :, (r: 1) Imr'[fbla b, (rb>>ImF'[f: la :, (r:  >>. (4.6) 

For this purpose we insert in the right-hand side of (4.1), the expansions (4.3) in the 
subspaces (mamb)" and (mamb)"'. The substitutions in the left-hand side of (4.1) are 
made in two stages. First, the expansion (4.3) in the space (?n,")N is substituted and 
then both the vectors in the spaces and (mb)N are expanded in the basis m?'mY' 
and m f ' m r  using the relation (2.16). Equating the coefficients at the same functions 
(4.6) in the right- and left-hand sides of the equality obtained, we arrive at the following 
set of equations for the CGCS for the group uab(m) 

(4.7) 
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x ( { fn } ,  p6 I{fh}, { G } ( r : ) ) % , ( { f b } ,  pb" IIfb), f fF}(rF)>, , .  (4.8) 

The left-hand side of the equality (4.8) is the scalar factor of CGC for the unitary group 
IJ,h(n) introduced in (4.2) 

The right-hand side of the equality (4.8) contains the analogous quantity (the scalar 
factor SF%) for the symmetric group S N .  The last two lines of the equality (4.8) may be 
denoted by: 

(4.10) 

which is actually a CGC for the group S N  for the non-standard reduction (2.8). The 
right-hand side of the relation (4.8) can now be treated as a definition of the scalar factor 
of the CGC for the group S, 

{f;} {fb} 1 f f h b } ]  [if:} If:} 1 i f : b } ]  (4.11) 

Thus, the solution (4.8) to equation (4.7) proves the equality of the scalar factors of the 
CGC for the unitary and symmetric groups 

SFYh = SFzb. (4.12) 

This is a direct consequence of the complementarity of groups u a b ( m )  and S N  in the 
space (m,mh) . 

x [ ( r ; i  c r b ,  ( r h b )  W n h  ( r : )  ( r 6 )  r k b )  W,h 

N 

5. The total fractional parentage coefficient of the Nq system 

The totally antisymmetric state in the system of N quarks can be written in the form 

* o x f a c y r ( q N ) =  1 ~ @ w ~ f r ( " ( 6 1 ~  6 2 ,  * * * > ~ N - - 1 ) / m ~ ~ S T [ ~ a C S T ( ~ ' ' ) )  (5.1) 
'5 -1, 

1 - ~  ( n f )  
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where @ W x f r ( i ) ( & ,  6,. . . , ( N - l )  is the orbital part of the wavefunction with the permu- 
tation symmetry {f}(r(i)) in the quark coordinates x l ,  x2,. . . , x N ;  

(5 .2 )  

are the relative quark coordinates and the centre of mass coordinate; w, are additional 
quantum numbers; nf is the dimension of the representation D” of the group S N ;  
Ai/dGis the Clebsch-Gordan coefficient for the group S N  (Hammermesh 1964) for the 
totally antisymmetric state in the inner product of the conjugated Young schemes 
{f}o{f)+{lN}; Ai = *l is the phase factor of the CGC. 

We define the total fractional parentage coefficients (FPC) of the separation of NI’ 
particles ( q N  + q” x q N )  as the coefficients in the expansion of the function (5.1) as a set 
of products of totally antisymmetric states in the subsystems q” and 4”’ (Neudatchin 
1979, Kurdumov 1970) 

nl,wxfu,, 
T’oXfaCST (4  N ,  = , 7 c e r  W k f  ‘Q bSTsW*f“Q%ST 

N O  

w x , f  .a;7SrwJl.f”.a& n.1 

(5.3) 
The braces { }CST in (5.3) mean the expansion of functions with the defined values of 
all three-dimensional momenta in the CST space C = C’ + C”, S = S’ + SI’, T = T’ + TI’, 
and the braces { },,= mean that among the quantum numbers ox is the defined value of 
the total momentum L and of the main orbital quantum number 7. cp,~(R) are the 
functions of relative motion of the N’q and N”q clusters, 

{ c p n f ( ~ ) { T W ~ f ~ U ~ T ( q N ’ ) T W ~ f ~ a ~ S T ( q  )}CST}rlL* 

(5.4) 

All the functions in (5 -3) are assumed to be normalised to 1 and hence the normalisation 
of r is 

( 5 . 5 )  
nf, wxfacs,  c c ,, c IrwxfQ&.,WbTf‘QJ = 1. 

u$f.a.hr w L f ” , a c s r  n,f 

From the definitions (5.1), (5.3) and (5.5) and the formula (3.7) it is easy to obtain an 
expression for the total fractional parentage coefficient 

rwLf‘a ~ s : s n w ~ f ~ ~ a  ;ST 
nl.w,facsr 

= ( n f w / n f ) 1 ’ 2 ( @ w x f  II { @ W ~ f ~ Q W w c p n d , , L )  

[f kST1 [f $ST1 

w&ST,([fkSl,T’) w&T,([fkl,T”) 

[fksl 
w b ,  ( [ f a ,  S ’ )  w k ,  

The first two cofactors in the right-hand side of (5.6), like the other ones, are the 
scalar factors of the CGC for some unitary groups. Consider this problem, using the 
wavefunctions of the oscillatory shell model (sM). The general case is an N-quark 
configuration s ‘p p, N = N,  + Np,  where s and p are the oscillatory single-particle Os 
and l p  states, whose wavefunctions will be denoted as cpoo and qle0 p = 0, *l. These 

N N  
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four functions form the basis of a simple irreducible representation of group Ux(4), and 
the N-particle orbital states (pi(l)pi(2). . . p k ( N )  are the components of the Nth rank 
tensor in four-dimensional space. Therefore, we can label the orbital shell states with 
the quantum numbers of group Ux(4). 

(5.7) &xfxrx(x l ,  x2, * * 9 X N )  = 1s Ns P N ,  [fxlax, (TX))SM 

and include the group Ux(4) in the reduction chain (1.1) by adding to it the chains 

Here Ox (3) is the three-dimensional rotation group and so the quantum numbers 
c y x  can be written in the form analogous to (3.4) 

CY, = GX, L, 1,:. (5.9) 

So, the orbital factor in (5.6) in the oscillatory shell model is analogous in form to the 
factor SFc, for example, at 17 = 0, I = 0,  

and the coefficient ( n p ~ ~ / n ~ ) ' / ~  in (5.6) can be treated as a scalar factor of the CGC for 
the group UxcsT(48) 2 Ux(4) x UcST(12). To see this, let us perform a calculation 
using the formula (4.8) and obtain 

In the orbital factor it is necessary to go over from the shell functions (5.7) (i, to the 
translationally invariant functions CP as in (5.1). To this end, one must factorise in (5.7) 
the function depending on the CM coordinate X (5.2) and to remove the spurious CM 

excitations by the rules developed in the translationally invariant shell model (TISM) 
{Neudatchin et a1 1979) which eventually leads to an additional factor ( m / n ) ' / 2 s  1 
before the orbital factor 

(5.10) SFx 

Consider a specific example, i.e. the configuration s4p2[42]xL = 0,2.  As is known 
(Neudatchin et a1 1979), in this case there are no spurious CM excitations and so the 
orbital fractional parentage coefficients of the TISM and SM are the same ((m/n)"' = 1). 
We use the quantum numbers of the TISM for the states in the two shells (s and p) in the 
capacity of wx. In this case it is sufficient to identify wx with the Young scheme 
[',I = [fplfp2fp3] in the p shell, Np = fPl +fp2+fp3 = 2, N, = 4. No-more-than-two-row 
Young schemes are found in the subsystem N', N", Nb, Ng, N,, since we assumed that 
the orbital Young scheme cfx] = E421 is two-row. Therefore, the orbital scalar factor 
(5.10) depends in this case only on the two-row Young schemes and must coincide with 
the analogous factor for the group U(2). It was shown (Obukhovsky et af 1979) that if 
[fbI= [NL], [f$l= [N:], [f,] = [N,], then the following relation holds true 

(~,fIIICP,.r.CPw,~f.~niJ?=)~~~~= ( m / n )  112 ( ~ P , f I I { ~ , w ' r . ~ ) o , , f " ~ n i } ~ ~ ) ~ ~ .  - 
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where 
j: = i (N:  -NIr) i’ = i(fi -fS 1, j :  = &N: - N i  ), j ’ G $ ( f ;  -fi”), P ,  

[fkI= [fX I, if&]= [f?fi” I, Uxl= [flfil, 

KL = [(2L‘+ 1)(2L”+ 1)(2L+ 1 ) y  0 

i = 4 ~ 1  - f ~ ,  iz = iWS - N ~ ) ,  N :  + NL = N ’ ,  N:  + N i  = N”,  

L” L” = 1. : :I 
The formula (5.1 1) holds true not only for the configuration ~ ~ p ~ [ 4 2 ] ~ L  = 0 , 2  for which 
it was initially derived, but for an arbitrary configuration s ‘p for the two-line Young 
scheme [flf2lx as well. In the cases when the Young schemes in the p shell [&I, [fi], 
[f,] contain no more than one line, SFx can be calculated using the standard technique 
of the two-shell FPC (see for example Neudatchin and Smirnov 1969). 

The formalism developed in $3  4 and 5, has been used to construct the fractional 
parentage expansions in the six-quark system. Tables 1,2,3 give the values of the scalar 
factors SFc, SFcs and SFcsT for the expansions q6+ q4  x q 2  and q6+ q3  x q3 in two 
configurations s6[6IxL = 0 and s4p2[42IxL = 0 with the deuteron-like quantum 
numbers in the CST space: [23]& = 0, S = 1, T = 0. In the configuration s6[6Ix the 
Pauli principle permits but one state 

N N  

91 = Is6[61xL = 0, D3]& = 1 [ 2 3 1 ~ ~ T  = 0 [ 1 6 1 ~ s ~ ) ~ ~ s ~  
but in the configuration s4p2[42IxL = 0 (or 2) there are already five permitted states that 
differ only by the Young schemes in the CS space. The permitted Young schemes are 
contained in the Clebsch-Gordan series for the inner product 

~ 2 ~ 1 ~  [42iS = wits + [32iiCs + [23~cs + [3i3iCs + [2i4iCs. 

Table 1. Scalar factors 

for the chain U,-(3) 2 Oc(3). 
( a ) :  N‘ = 3, N = 3, [fCl = [231, c = 0. 
(b):  N‘  = 4, N” = 2, [fc] = p 3 I ,  C = 0. 
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Table 2. Scalar factors 

for the chain Ucs(6) 3 Uc(3) x Us(2). 
( a  1: N' = 3, "'= 3, [fm] = [23], [fc] = [23], s = 1. 
( b ) :  N' = 3, N" = 3, ifcs] = 1421, [fcl = ~ 2 ~ 1 ,  s = 1. 
( e ) :  N ' = 4 ,  N"=2,  [ j ~ s ] = [ 2 ~ ] , [ f c 1 = [ 2 ~ ] ,  S = l .  
tdl: N ' = 4 .  N " = 2 , [ f c s ] = [ 4 2 1 , [ f c ] = [ 2 3 ] , S = 1 .  

i n  6 

The most interesting is the state with the Young scheme [42 ]~s  where the colourmag- 
netic forces of quantum chromodynamics lead to the strongest quark attraction 
(Obukhovsky er a1 1979). Therefore we have constructed a set of fractional parentage 
coefficients for the state 

In both the cases (TI and Y2) the multiplicites are absent from any products (inner and 
outer) of the Young schemes and consequently the additional quantum numbers w and 
v are not needed. 
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The fractional parentage coefficients for the configuration s4p2 have been indepen- 
dently calculated by Harvey (1981) who used another reduction chain, i.e. 

The reduction (1.1) used in the present paper is more convenient for calculations 
with the forces of quantum chromodynamics symmetric with respect to the group 
Ucs(6) (Jaffe 1977). 
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